AAF ASSOCIATION SPECIFICATION

Advanced Authoring Format (AAF)
Stored Format Specification v1.0.1

Copyright © 2004 AAF Association

NOTES - The user’s attention is called to the possibility that implementation and compliance with this specification may require use of
subject matter covered by patent rights. By publication of this specification, no position is taken with respect to the existence or validity
of any claim or of any patent rights in connection therewith. The AAFA, including the AAFA Board of Directors, shall not be responsible
for identifying patents for which a license may be required by an AAF specification or for conducting inquiries into the legal validity or
scope of those patents that are brought to its attention.

Object Manager Stored Format
Avid Technology Inc.

Version 1.0.1

Author: Tim Bingham
(revised Feb 12, 2004 by Oliver Morgan, Metaglue Corp)

July 12, 2004

1.

Contents

Mapping of Objects to StrUCTUISd STOTAZEcccververiieriieieeie ettt ettt ste e bt e e e e eeaessaesteesseessesssessaesseesseensenssenns 4
1.1 OVETVIEW ...ttt sttt ettt st b et a et e s et st e bt sh e eb e e st e s et et e be e bt eb e e st ea b et e nb e bt sbeeb e e bt eb e emt et e besbeebesbeebeennens 4
1.2 DAta STIUCLUIESevtiiieiieieeie ittt ettt ettt ettt et et eat e sbe e b e e bt et e e st e saeesaeesbeemateat e eeteeue e s bt enbeenbeemneennesanenueenaee 6

0 O O 0N 2 21 I) 0TSSR 6
L2122 DALA TYPES ettt ettt ettt ettt sttt et e st e et e s et e s at e e s a bt e e ab e e e a bt e e ab e e eh bt e sabe e bt e e nbbeebteenbaeebees 6
L1.2.1.3 Property INAEXooouieiieiieeeeee ettt ettt sttt et e et e e s et e st et e ensessaesseesneesseeseenseeneeens 6
1.2.1.3.1 PUIPOSE ..ttt ettt et a e bbbttt e e e e he e eh e e bt et e eateenteeheenbeentean 6
1.2.1.3.2 EXternal 1@PreSENTaAtION.coueiiuiiiieii ettt st se e bttt ettt eae e b et e b eean 6
1.2.1.3.3 Structure of Property IndeX HEader...........ccueviiiiiiiiiiiciicicieceeeteeteeee e 6
1.2.1.34 Structure of a Property INdeX ENtry........c.cocoiiiiiiiiiiiiciicieeeeeie ettt es 6
1.2.1.4 Strong ObJect REFEICNCEcciictiiiieiieiecie ettt ettt et ebeesbeesaessaesaaesseeseessesssenns 7
1.2.14.1 PUIPOSE ...t et ettt et ettt ettt e ab e e bt e a b e e bt e e abeebteenabeenaeas 7
1.2.1.4.2 External REPreSEntationcceeieriieriieiieieeiestesteeieetesaeseeesseeseeaessaesseesseesseenseensesssesssenseensens 7
1.2.1.5 Strong Object REfEreNCE VECIOTecviiiiiiieiieiieie ettt ettt ste et tesee e e saeesseennesseesseensennnenes 7
1.2.1.5.1 PUIPOSE ...ttt ettt e bt e et bt e e bt e bt e e bt e e bt e be e e bt e ebees 7
1.2.1.5.2 External RePreSEntationcccceeieiuieiiieiieieet ettt ettt ettt et e see et e teenteeneeeneesneennean 7
1.2.1.5.3 Structure of a Strong Object Reference Vector Index Header..........cccoovevievienieiiiieieiecee 7
1.2.154 Structure of a Strong Object Reference Vector Index Entrycccooovevieniininiiiiiiinenieceee 7
1.2.1.6 Strong Object REfEIeNCE SELScc.eiitiiiiiiiiiiiiie ettt ettt et eae 8
1.2.1.6.1 PUIPOSE ...ttt ettt et e ettt e s tb e et b e e sae e st e e sbe e bt e e nbe e st e easbeetaeenbeetaeensbaennaas 8
1.2.1.6.2 External REPreSENtationcc.ecieriieriieiieieeeesieesieeieetesteseeesteesseessesssesssesseesseenseessesssenseesseesens 8
1.2.1.6.3 Structure of a Strong Object Reference Set Index Headercoovvvvieiiiienieniieiiciecieeeeee 8
1.2.1.6.4 Structure of a Strong Object Reference Set Index ENtry.......c.cccvevvveevieieiiinienieie e 8
1.2.1.7 Weak ODJECt RETEIENCEoouieeieiieiieieeie ettt ettt ettt e easesaaesseesneenseenseenseensenns 9
1.2.1.7.1 PUIPOSE ...ttt ettt et b et e bb e e bt e bt e e bt e e bt e e bt e e bt e eaeas 9
1.2.1.7.2 EXternal T@PIreSENIATION. ... c..evtirtirtirterteetieiteitetest ettt ettt ettt be sttt be et et e st st besae e eneen 9
1.2.1.7.3 Structure of @ Weak Object REferencecocvevuieiieiiiiieieceieeee e 9
1.2.1.8 Weak ODbject REfEreNnce VECIOT.......ccuiiiiiiieiieie ettt ettt sttt aeeee et s esae e e eneeene 9
1.2.1.8.1 PUIPOSE ...ttt ettt st e et e st e et e e st e e enb e e st e e e ab e e sa b e e e nbeeenbeeenbeeenbeeenaeeenbaeanaeens 9
1.2.1.8.2 EXternal 1@PIeSENTAtION.ccviitieiieiieiieeeeeteeste et ete et e eteesteebeesseesaessaeseeesseesseesseessesssesseesseesseensens 9
1.2.1.8.3 Structure of a Weak Reference Vector Index Headercocooeiiiiiiieiiiiniiiiieecececeee 9
1.2.1.8.4 Structure of a Weak Object Reference Vector Index Entry.........cccoecvevieniinienienieiecieceeseens 9
1.2.1.9 Weak ODbjJect REfEIENCE Stecouieiiieiieiieieiiereee ettt ettt s e et e esbessaessaessaesseenseensenssenns 9
1.2.1.9.1 PUIPOSE ...ttt ettt ettt ettt et e bttt ettt e ab e e bt e ab e e bt e e it e e bteennbeenteas 9
1.2.1.9.2 External REPreSentationccecieciieieeienieieie ettt ettt te et e s eneene e nns 10
1.2.1.9.3 Structure of a Weak Object Reference Set Index Header...........coccecveiiniininincnininccceicncenn 10
1.2.1.94 Structure of a Weak Object Reference Set Index Entrycocceceecveieniininininicncnenceieiecenn 10
1.2.1.10 IMEAIa DIALA....c..eeeeee e ettt et a b et et e b e e bae bt e bt e bt e nbeeteenteens 10
0 0 0 O g5 1o YOS 10
1.2.1.10.2 External RePIeSENtationcccceoiiiiiiiiiieriieii ettt ettt ettt et et sae ettt eee b enaeas 10
1.2.1.11 The Referenced-Properties Table.........c.occuiiiiiieiieiieiecie ettt 10
1.2.1.12 The Referenced-Properties Table HEAderc.covevuieiiiiiiiiiiieceeieceeeeee e 10
1.3 Storage and Stream NAMINEcc.eccviiiiiiieiiereete e eteeee st esteebeebeesaesteesseesseeseessesssesseesseesseessesssesssesssessessses 10
L4 SEOTEA FOTINS ..ottt sttt ettt b e bbbt ebe e bt oo bt et e b et sbeebe s bt ebeeseennen 10
1.4.1 ASSSIZINIMCIILS ...eeuvievieiieiestesetesttete et e et e e teesseesteessessaesseeseenseansesssesssesseenssesseessanssenseenseensesnsesssesseesseenseansenns 11
LT T INOEES ettt ettt ettt st a ettt et et e bbbt et st sae e sae ettt et eaeeebe et eennees 11
1.4.2 Currently Defined VAlUEScc.eeuiiiiiieieieeee ettt sttt et et e e ettt et nae e ene 11
S N =) 2 USSP 11
Li4.2.2 N OB .ttt ettt ettt ettt b e b e b e ettt e at e e bt e bt et e et e et e eh e e bt e bt e bt e ateeat e eheente e bt enteeneeehe e beenbean 12

143 Representations by Stored FOTM.........ooiiiiiiiiieee et 12
L.5 CAPACTEY LAITIIES ...eeentienieeiie ettt ettt et e a e e b e b et et e e etesb e e sbe e bt emtesbeenbeenbeemteeneeeneenbeenbean 12

1.5.1 PropertyIndexHeader and PropertyIndeXENtry.........cccoecviiiiiiinieniieiiciecceie et 12
1.5.2 ONET FIELAS ..ttt bbbt e et ettt b e bt bt e st e st et et e b st eb e s bt ebe et eneen 13

1.6 FILE SIZNMATUTES . .eoutitititietieteeieeitet ettt ettt ettt ettt ettt b e bt et est et et et e st e bt s bt ebe et e eatebe et et e beseeebeeaeebeennennen 13

l.

Mapping of Objects to Structured Storage

1.1 Overview

1)

2)

3)

4)

5)

Each object is represented by a corresponding IStorage. The stored id of the object is stored as the CLSID of the

IStorage object and is part of the structured storage overhead.

Each IStorage contains an IStream called "properties". The “properties” IStream is consists of two parts, the first

portion contains the index of properties for the object and the second portion contains the “flat” or “simple”

property values for the object. “Flat” and “simple” here means values that are not objects, that are not object
collections and that are not streams. Note, however, that objects, object collections and streams do contribute to the

“properties” IStream. The index and values are in the same [Stream, rather than in separate IStreams, to reduce the

Structured Storage overhead.

a) The property index portion contains a header followed by a counted array of structures.

i) The header has the format.
(1) Byte order
(2) Count of properties. The number of array elements that follow.
ii) The counted array has the format with the following fields
(1) Property Id — identifies the property
(2) Property stored form - the structural “type” of the property. This indicates the meaning of the “flat”
value in the “properties” stream.
(3) Size — the size of the “flat” value of this property in the “properies” IStream.

b) The property value portion contains the “flat values” of the properties for this object.

A single contained object is stored in a sub-IStorage. The name of the IStorage is given by the “flat” value in the

“properties” IStream corresponding to the contained object’s entry in the "properties" IStream.

A contained vector of objects is represented as follows

a) Each vector is described by an index stored in an [Stream. The name of the vector index IStream is given by
the “flat” value in the “properties” IStream corresponding to the contained object vector’s entry in the
"properties" IStream.

b) The contents of the vector index IStream are
i) Count of objects
ii) First free insertion key
iii) Last free insertion key
iv) Array of insertion key values, one for each contained object, the first key in the array is the key of the first

object in the contained vector and so on.

c) Each sub-object in the contained vector is stored in an IStorage whose name is formed from the name of the
vector and the insertion key of the contained object.

A contained sets of objects is represented as follows.

a) Each set is described by an index stored in an IStream. The name of the set index [Stream is given by the
“flat” value in the “properties” IStream corresponding to the contained object set’s entry in the "properties"
[Stream.

b) The contents of the set index IStream are
i) Count of objects
ii) First free insertion key
iii) Last free insertion key

6)

7)

8)

9)

iv) Key property id — the id of the property used to uniquely identify each object in the set. The value of this
property is the object’s search key
v) Key size — the size of the search key
vi) Array of triples, one for each contained object
(1) Insertion key
(2) Count of weak references
(3) Key value — the search key

Weak references are represented as follows

a)

b)

¢)
d)

Tag — identifies the path from the root object to the property instance containing the object that is the target of
this weak reference

Key property id

Key size

Key value

Vectors and sets of weak references are represented as follows.

a)
b)

¢)
d)

e)

Count of referenced objects

Tag — identifies the path from the root object to the property instance containing the object that is the target of
this weak reference

Key property id

Key size

Array of key values one for each referenced object

Media data is stored in a sub-IStream. The name of the IStream is given by the “flat” value in the “properties”
IStream corresponding to the Media data stream’s entry in the "properties" IStream

There is one per-file data structure used for resolving weak references. This data structure is stored in an [Stream
called “referenced properties” in the root IStorage. This stream consists of

a)
b)

¢)

Byte order

Count of entries

A sequence of null terminated lists of property ids. The first list is referenced using tag 0 and so on. Each list
is a path from the root object to a particular property instance.

1.2 Data Structures

This section describes the data structures used to map objects on to structure storage. Note that these are not the actual
data structures, they are provided for illustrative purposes only.
1.2.1.1 Integral Types

These types, assumed to be defined appropriately for a particular host, are used in subsequent declarations.

typedef ... OWVUI nt 8;
typedef ... OWUI nt 16;
typedef ... OWUI nt 32;

1.2.1.2 Data Types
These types are used to define members of data structures.

typedef OMJInt8 OwByteO der;
typedef OMJInt8 QOWersion;
typedef OMUI nt 16 OWVPropertyCount;
typedef OMUI nt 16 OVPropertyld;
typedef OMJ nt 16 Qvbt or edFor m
typedef OMUI nt 16 OVPropertySi ze;
typedef OMUInt8 OWKeySi ze;
typedef OMJI nt 16 OWPropertyTag;

1.2.1.3 Property Index

1.2.1.3.1 Purpose

The property index is an index into the property values. Both the index and the values (“flat” values only) are stored in
a stream named “properties”.

1.2.1.3.2 External representation

An IStream called “properties” containing a Pr oper t yl ndexHeader followed by _ent r yCount
Pr opertyl ndexEnt ry structs.

1.2.1.3.3 Structure of Property Index Header
A Propertyl ndexHeader is defined as follows...

typedef struct Propertyl ndexHeader {
OvByt eOr der _byteOrder;
OwWer si on _fornmat Versi on;
OWPr opertyCount _entryCount;

} Propertyl ndexHeader ;

The _byt eOrder is the byte order of

¢ the remaining fields of the Pr opert yl ndexHeader struct

e the Propertyl ndexEntry structs that follow

e the actual property data

The _f or mat Ver si on is version number of the stored format, this allows for otherwise incompatible changes to the
stored format.

The _ent ryCount is the number of Pr opert yl ndexEnt ry structs that follow.

1.2.1.3.4 Structure of a Property Index Entry
typedef struct PropertylndexEntry {
OvPr opertyld _pid;
OVst oredForm st oredForm

OWPropertySi ze _I engt h;
} Propertyl ndexEntry;

The _pi d is the id that describes the property. This is a shorthand version of the GUID that uniquely identifies the
property. Property ids are locally unique. For all predefined properties the property id is the same in all files. For user
defined extension properties the assigned property id may vary across files.

The _st or edFor midentifies the “type” of representation chosen for this property. This field describes how the “flat”
property value should be interpreted. Note that the stored form described here is not the data type of the property
value, rather it is the type of external representation employed. The data type of a given property value is implied by
the property ID. The actual data type of a property value may be determined by looking up the associated property id in
the dictionary.

The _| engt h is the length, in bytes, of the property value in the property value stream.

1.2.1.4 Strong Object Reference

1.2.1.4.1 Purpose

A single contained object.

1.2.1.4.2 External Representation

Stored form SF STRONG OBJECT REFERENCE

Property value Name of object

1.2.1.5 Strong Object Reference Vector

1.2.1.5.1 Purpose
An ordered collection of strongly referenced (contained) objects.

1.2.1.5.2 External Representation

Stored form SF STRONG OBJECT REFERENCE VECTOR
Property value Name of vector

Set index name <name of vector> index

Set element name <name of vector>{<local key of element>}

Each vector index consists of a St r ongRef er enceVect or | ndexHeader followed by _ent r yCount
St rongRef er enceVect or | ndexEnt ry structs.

1.2.1.5.3 Structure of a Strong Object Reference Vector Index Header
A St rongRef er enceVect or | ndexHeader is defined as follows...

typedef struct StrongReferenceVectorl| ndexHeader {
OVl nt 32 _entryCount;
OVl nt 32 _firstFreeKey;
OVUI nt 32 _| ast Fr eeKey;

} StrongRef erenceVect or | ndexHeader ;

The _ent r yCount is the number of Vect or | ndexEntry structs that follow.

The _fir st FreeKey is the next local key that will be assigned in this vector.

The | ast Fr eeKey is the highest unassigned key above _fi r st Fr eeKey. The keys between _f i r st Fr eeKey
and _| ast Fr eeKey are unassigned, while there may be other gaps in key assignement this represents the largest one.

1.2.1.5.4 Structure of a Strong Object Reference Vector Index Entry

typedef struct StrongReferenceVectorlndexEntry {
OVUI nt 32 _| ocal Key;

} StrongRef erenceVect orl ndexEntry;

The _| ocal Key uniquely identifies this strong reference within this collection independently of its position within
this collection. The _| ocal Key is used to form the name assigned to the element in this vector at the corresponding
ordinal position. That is, the _| ocal Key of the first St r ongRef er enceVect or | ndexEnt ry is used to form the
name of the first element in the vector and so on. The _| ocal Key is an insertion key.

1.2.1.6 Strong Object Reference Sets

1.2.1.6.1 Purpose

An unordered collection of strongly referenced (contained) uniquely identified objects, each of which can be
» efficiently located by key - O(Ig N)
» the target of a weak reference

1.2.1.6.2 External Representation

Search key Obtained from "object->identifier()"

Stored form SF STRONG OBJECT REFERENCE SET
Property value Name of set

Set index name <name of set> index

Set element name <name of set>{<local key of element>}

Each set index consists of a St r ongRef er enceSet | ndexHeader followed by _ent r yCount
St ronRef er enceSet | ndexEnt ry structs.

1.2.1.6.3 Structure of a Strong Object Reference Set Index Header
typedef struct StrongReferenceSet| ndexHeader {

OwUI nt 32 _entryCount;

OVUI nt 32 _firstFreeKey;

OVUI nt 32 _| ast Fr eeKey;
OwPropertyld _identificationPid;
OWKeySi ze _identificationSize;

} StrongRef erenceSet | ndexHeader ;

The i dentification field of St r onRef er enceSet | ndexEnt ry is the value of the property on the
contained objects with property id _i denti fi cati onPi d. Each i dentificati on inthe
St rongRef er enceSet | ndexEnt ry structs that follows is _i denti fi cati onSi ze bytes in size.

1.2.1.6.4 Structure of a Strong Object Reference Set Index Entry
typedef struct StrongReferenceSetlndexEntry {

OVUI nt 32 _l ocal Key;
OvUI nt 32 _referenceCount;
<vari abl e> _identification;

} StrongRef erenceSet | ndexEntry;

The _r ef er enceCount is the count of weak references to this object. The type of the _i denti fi cati on field
varies from one instance of a StrongReferenceSet to another. The value of the _i dent i fi cati on field uniquely
identifies this object within the set. It is the search key.

StrongReferenceSetindexEntry structs appear in the index in order of increasing key. If an application consuming the
set index wishes to construct a binary search tree, care must be taken not to invoke the worst case performance by
inserting the keys in order. One way to avoid this problem is to insert the keys in “binary search” order. That is the
middle key is inserted first then (recursively) all the keys below the middle key followed by (recursively) all the keys
above the middle key.

1.2.1.7 Weak Object Reference

1.2.1.7.1 Purpose

A weak object reference is a persistent data type that denotes a weak reference to a uniquely identified object. In
memory, weak references are similar to pointers. When persisted, weak references contain the unique identifier of the
referenced object.

1.2.1.7.2 External representation

Stored form | SE WEAK_OBJECT REFERENCE

1.2.1.7.3 Structure of a Weak Object Reference

typedef struct WeakObj ect Ref erence {
OVPropertyTag _referencedPropertyl ndex;
Owropertyld _identificationPid,
OWKeySi ze _identificationSize;
<vari abl e> _identification;

} WeakObj ect Ref erence;

The _r ef erencedPr opert yl ndex is the index into the referenced property table of the path to the property (a
strong reference set) containing the referenced object. The type of the _i denti fi cati on field varies from one
instance of a Weak Cbj ect Ref er ence to another. The _i denti fi cati on field uniquely identifies the object
within the target set.

1.2.1.8 Weak Object Reference Vector

1.2.1.8.1 Purpose
An ordered collection of weak references.

1.2.1.8.2 External representation

Stored Form SF WEAK OBJECT REFERENCE VECTOR
Property value Name of vector
Vector index name <name of vector> index

1.2.1.8.3 Structure of a Weak Reference Vector Index Header

typedef struct WeakRef erenceVect orl ndexHeader {
oWl nt 32 _entryCount;
OwPropertyTag _referencedPropertyl ndex;
OvPropertyld _identificationPid;
OWKeySi ze _identificationSize;

} WeakRef er enceVect or | ndexHeader ;

1.2.1.8.4 Structure of a Weak Object Reference Vector Index Entry

typedef struct WeakReferenceVectorl ndexEntry {
<variable> _identification;
} WeakRef erenceVect or | ndexEntry;

1.2.1.9 Weak Object Reference Set

1.2.1.9.1 Purpose

An unordered collection of weakly referenced (not contained) uniquely identified objects, each of which can be
e efficiently located by key - O(Ig N)

1.2.1.9.2 External Representation

Search key Obtained from "object->identifier()"
Stored form SF WEAK_OBJECT REFERENCE SET
Property value Name of set

Set index name <name of set> index

1.2.1.9.3 Structure of a Weak Object Reference Set Index Header

typedef struct WeakRef erenceSet | ndexHeader {
... same as WakRef erenceVect or | ndexHeader
} WeakRef er enceSet | ndexHeader ;

1.2.1.9.4 Structure of a Weak Object Reference Set Index Entry

typedef struct WeakReferenceSet| ndexEntry {
... same as WeakRef erenceVector| ndexEntry ...
} WeakRef er enceSet | ndexEntry;

1.2.1.10 Media Data

1.2.1.10.1 Purpose
Storing embedded media. Also used to store other large variably sized information such as timecode.

1.2.1.10.2 External Representation

Stored form SF DATA STREAM

Property value Name of stream

1.2.1.11 The Referenced-Properties Table

A weak object reference references an object in a particular strong reference set property instance. Property instances
are represented by a null terminated list of property ids. The list is the path from the root object to the property instance.
In order to avoid storing the path to the referenced property in each weak reference the path is stored once, in the
referenced-properties table, and the index of the path in the table is stored in the weak reference. This index is also
called a tag.

There is one referenced-properties table in each AAF file. The referenced-properties table is a stream called

“/I' ref erenced properties”. The stream consists of a header followed by a sequence of null terminated property
id lists similar to a string space.

1.2.1.12 The Referenced-Properties Table Header
typedef struct ReferencedPropertiesTabl eHeader {

OvByt eOr der _byteGOrder;
OWPr opertyCount _pat hCount ;
OMUI nt 32 _pi dCount ;

} ReferencedProperti esTabl eHeader;

The _pat hCount field holds the number of referenced-properties in the table. Each reference property is stored as a
property path — a null-terminated list of property ids. The _pi dCount field is the total number of property ids that
follow, including null terminators. The first property path in the list has a referenced property index (tag) of 0 and so
on.

1.3 Storage and Stream Naming
[TBS]

1.4 Stored Forms

10

This section describes the stored form bit assignments.

1.4.1 Assignments

bit(s)

Value

15..8

Not used, must be 0

7..6

00 = object reference

01 = stream

10 = fixed size data

11 = variable size data

0 = weak

1 = strong

0 = singleton

1 = collection

0 = vector

1 =set

0 = not a unique object identification (set or search key)

1 = a unique object identification (set or search key)

0 = opaque (not understood or interpreted by the Object Manager)

1 = transparent (understood and interpreted by the Object Manager)

0 0 = not a stored object identification ("CLSID")

1 = a stored object identification ("CLSID")

1.4.1.1 Notes

1) Not all combinations are valid
a) bit 5 is only examined if bits 7..6 == 00
b) bit 3 is only examined if bit 4 ==
2) Not all valid combinations are currently used/implemented

1.4.2 Currently Defined Values

Stored form name Value Value Used

SF DATA 10.x.x.x.x.1.0 82 y

SF DATA STREAM 01.x.x.x.x.1.0 42 y

SF STRONG OBJECT REFERENCE 00.1.0.x.x.1.0 22 y

SF STRONG OBJECT REFERENCE VECTOR 00.1.1.0.x.1.0 32 y

SF STRONG OBJECT REFERENCE SET 00.1.1.1.x.1.0 3A y

SF WEAK OBJECT REFERENCE 00.0.0.x.x.1.0 02 y

SF WEAK OBJECT REFERENCE VECTOR 00.0.1.0.x.1.0 12 y

SF WEAK OBJECT REFERENCE SET 00.0.1.1.x.1.0 1A y

SF WEAK OBJECT REFERENCE STORED OBJECT ID 00.0.0.x.x.1.1 03 n [1]
SF UNIQUE OBJECT ID 10.x.x.x.1.1.0 86 n [2]
SF OPAQUE STREAM 01.x.x.x.x.0.0 40 n [3]

1.4.2.1 Key

X = no meaning, must be zero
y = currently used in the reference implementation
n = not currently used in the reference implementation

11

1.4.2.2 Notes

[1]= Would allow the stored object id (stored in the CLSID field of the IStorage) to be treated as a weak reference.

[2] = Would allows unique identifiers to be stored only in the set index instead of both in the set index and a property

value.

[3] = Would allow maintaining a rule that all storage elements in a file are part of an OMStorable while allowing
"extra" storage elements such as the "SummaryInformation" stream.

Even though only 1 byte is needed, OMStoredForm is 2 bytes in size in order to keep each property index entry an even

number of bytes in size.

Consumers must ignore index entries that they don't understand. For unknown values of _storedForm, length is
guaranteed to be valid, the bytes cannot be interpreted correctly, however they can be skipped.

1.4.3 Representations by Stored Form

Stored form name

“flat” value

“deep” value

SF DATA

Data

None

SF DATA STREAM

Byte order, Stream name

IStream containing data

SF STRONG OBJECT REFERENCE

Object name

IStorage containing object

SF STRONG OBJECT _REFERENCE VECTOR

Vector name

IStream containing index,
one [Storage per object

SF_STRONG_OBJECT REFERENCE_SET

Set name

IStream containing index,
one [Storage per object

SF WEAK_OBJECT REFERENCE

Tag, Key pid, Key size, Key

None

SF WEAK OBJECT REFERENCE VECTOR

Vector name

IStream containing index

SF WEAK OBJECT REFERENCE SET Set name IStream containing index
SF WEAK OBJECT REFERENCE STORED OBJECT ID [NYI NYI
SF UNIQUE OBJECT ID NYI NYI
SF OPAQUE STREAM NYI NYI

1.5 Capacity Limits

1.5.1 PropertylndexHeader and PropertylndexEntry

There is one PropertyIndexHeader per object instance. There is one PropertylndexEntry per property instance.

PropertylndexHeader | Field Name Field Size | Capacity
_byteOrder 1 'L’ (little endian) or 'B' (big endian)
_formatVersion 1 256 different revisions to the file format
_entryCount 2 64k properties per object instance

Total 4

PropertyIndexEntry Field Name Field Size | Capacity
_pid 2 64k different property definitions per file
_storedForm 2 64k different ways to store a property value
_length 2 64k bytes of data per simple property

Total 6

The capacity limits above apply only to simple property data. They do not apply to

12

1. streamed data such as media data (essence) and time code.
2. referenced or contained objects (singleton, vector or set)

The design allows 64k properties per object each property may be up to 64k bytes in size. That's a theoretical limit of
4096 M per object.

The design omits an _offset field from the PropertylndexEntry and requires property values to be contiguous within the

“properties” stream. This restriction could be relaxed later by assigning a _storedForm bit value to mean "unallocated
and available for use".

1.5.2 Other fields

Field Field Size | Capacity

_entryCount 4 Maximum of approximately 4 Gazillion elements in any
strong/weak reference set/vector. This seems too much but it is a
theoretical limit. Note that our design goal of 100,000 Mobs
means that 2 bytes would be too small here. This field occurs
once per collection (strong/weak reference set/vector).

_identificationSize | Maximum key (unique identifier) size of approximately 256
bytes. We currently have GUIDs that are 16 bytes and UMIDs
that are 32 bytes. This field occurs once on each strong reference
set, weak reference singleton, weak reference vector and weak
reference set.

_referenceCount 4 Maximum of approximately 4 G different weak references to a
given object. This field occurs on each element of a strong
reference set. OXfffffff == this object is sticky.

_referencedPropertylndex | 2 Maximum of approximately 64 k strong reference sets each
containing weakly referenced objects. This field occurs once on
each weak reference singleton, weak reference vector and weak
reference set. It identifies the set in which the target of the weak
reference(s) resides.

_localKey 4 The localKey is the insertion key. This field is the same size as
the entryCount field.

1.6 File Signatures

The file signature is stored as the CLSID of the Root [Storage.

Two signatures are used for AAF StructuredStorages files, one for StructuredStorages with 512 byte sector size, the
other for 4096 byte sector size.

Name Value

aaf Si gnature_Aaf _SSBinary | {0x42464141, 0x000d, Ox4d4f,
{0x06, 0x0e, Ox2b, 0x34, 0x01, 0Ox01, O0x01, Oxff}}

aaf Si gnat ur e_Aaf _SSBi n_4K | {0x0d010201, 0x0200, 0x0000,
{0x06, 0Ox0e, O0x2b, 0x34, 0x03, 0x02, 0x01, 0x01}}

13

	Mapping of Objects to Structured Storage
	Overview
	Data Structures
	
	Integral Types
	Data Types
	Property Index
	Purpose
	External representation
	Structure of Property Index Header
	Structure of a Property Index Entry

	Strong Object Reference
	Purpose
	External Representation

	Strong Object Reference Vector
	Purpose
	External Representation
	Structure of a Strong Object Reference Vector Index Header
	Structure of a Strong Object Reference Vector Index Entry

	Strong Object Reference Sets
	Purpose
	External Representation
	Structure of a Strong Object Reference Set Index Header
	Structure of a Strong Object Reference Set Index Entry

	Weak Object Reference
	Purpose
	External representation
	Structure of a Weak Object Reference

	Weak Object Reference Vector
	Purpose
	External representation
	Structure of a Weak Reference Vector Index Header
	Structure of a Weak Object Reference Vector Index Entry

	Weak Object Reference Set
	Purpose
	External Representation
	Structure of a Weak Object Reference Set Index Header
	Structure of a Weak Object Reference Set Index Entry

	Media Data
	Purpose
	External Representation

	The Referenced-Properties Table
	The Referenced-Properties Table Header

	Storage and Stream Naming
	Stored Forms
	Assignments
	Notes

	Currently Defined Values
	Key
	Notes

	Representations by Stored Form

	Capacity Limits
	PropertyIndexHeader and PropertyIndexEntry
	Other fields

	File Signatures

