
AAF Developer Overview 1 11 April 2000

AAF
An industry-driven open standard
for multimedia authoring

This document is intended for developers with an interest in the
Advanced Authoring Format. It describes AAF’s origins, discusses
the need for such an industry-wide standard, and provides an
overview of the basic concepts.

Contents

Background ... 2
The AAF Model ... 4
Essence ... 4

Metadata ... 5
Content ... 7

The AAF File Format .. 10
Software Architecture .. 11
AAF Class Hierarchy & Object Model ... 12

The AAF Software Development Kit .. 14
AAF Documents .. 15

Installation Configurations .. 15
About the AAF Association ... 16
Development Timeline .. 16

Top 10 Reasons for Joining the AAF Association 17
For More Information ... 17

The Advanced Authoring Format (AAF) is a multimedia
file format that enables content creators to easily ex-
change digital media and metadata across platforms,
and between applications. The AAF simplifies project
management, saves time, and preserves valuable
metadata that was often lost when transferring media
between applications in the past.

Wouldn’t it be great

to be able to share

audio, video, paint,

and 3D files easily

between editing and

effects applications,

as well as the data

that holds them all

together? To be able

to import not just the

media, but all the

creative decisions

that turn raw sound

and imagery into

finished content?

Product specifications are subject to change without notice. The software described in this document is furnished under
a license agreement, and may be used or copied only in accordance with the terms of the license agreement.

Copyright © 1998–2000 AAF Association Inc. All rights reserved

Trademarks: Avid, Avid Cinema, Digidesign, Media Composer, OMF, Open Media Framework, OMF Interchange, Pro
Tools, and Softimage are registered trademarks and Sound Designer II is a trademark of Avid Technology, Inc., or its
subsidiaries or divisions. Adobe, After Effects, Photoshop, and Premiere are registered trademarks of Adobe Systems Inc.
Apple and Macintosh are trademarks of Apple Computer, Inc., registered in the United States and other countries. DirectX,
Microsoft, and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States
and other countries. Matrox is a registered trademark of Matrox Electronic Systems Ltd. UNIX is a registered trademark
of The Open Group. All other trademarks contained herein are the property of their respective owners.

Advanced
Authoring
Format

D E V E L O P E R O V E R V I E W

AAF Developer Overview 2 11 April 2000

Background

High-end, rich content authoring is a delicate struggle—bringing

together highly disparate source media, and arranging these

elements to form a coherent whole.

Consider the example of putting together all of the audio elements

for a film soundtrack. This involves transferring all of the music

tracks, the ambient sound tracks, the performer’s synch sound and

ADR, and the Foley effects from their original source, remixing or

editing all of them, and doing frame-accurate synchronizations to

the motion picture elements. This process requires a lot of infor-

mation about each audio source element, as well as information

about other media associated with it during playback.

The media industry uses a wide range of source materials, as well

as a set of highly varied capture tools with very different con-

straints (cameras, keyboards, audio input sources, scanners, disk

drives). This leads to a great deal of time and effort spent convert-

ing media into formats that can be used by authoring applications.

While both SMPTE and EBU have effectively addressed conversion

problems in the dedicated hardware world by creating a set of

standards, the same cannot yet be said for software. Working with

EBU/SMPTE, the AAF Association is spearheading an effort to

make the Advanced Authoring Format such a software standard.

“ While digital video

can be stored in an

archive as program

content, there is no

uniform way to

describe

relationships

between the video

itself and metadata

that describes how

this video is to be

displayed, edited, or

related to other

program material.

AAF resolves this

dilemma by

providing a uniform

way for content

creators to link

information about

content to the

content itself. ”

AAF Association

AAF
Advanced Authoring Format

AES
Audio Engineering Society

ASF
Advanced Streaming Format

AUID
Advanced Unique Identifier

EBU
European Broadcasting Union

KLV
Key Length Value

MXF
Media Exchange Format

NCITS
National Committee for
Information Technology
Standards

OMFI
Open Media Framework
Interchange

SMPTE
Society of Motion Picture and
Television Engineers

SSF
Structured Storage Format

UMID
Unique Material Identifier

The EBU/SMPTE Task Force
In 1996, a joint task force of the SMPTE and the European
Broadcasting Union (EBU) was formed to look into the challenges,
roadblocks, and standards development opportunities available in
the looming shift in worldwide broadcasting from analog to digital.
Thus was born the EBU/SMPTE Task Force for Harmonized
Standards for the Exchange of Program Material as Bit
Streams.

An advanced summary of findings was given at NAB in April
1998, with a fully finalized report delivered to an enthusiastic
audience of over 300 at IBC in Amsterdam in September 1999.
The final report was published in the September Journal, one of the
largest and most widely distributed issues ever.

This was truly a Herculean effort involving the time and energy of
literally hundreds of volunteers and staff who met 17 times since
the project was begun two years earlier. As Engineering Vice-
President Bill Miller wrote in the Journal introduction to the report,
“This joint effort of SMPTE and the European Broadcasting Union
(EBU) is, we believe, one of the most significant achievements in
the history of the two organizations.”

SMPTE Abstract

How does AAF
relate to SMPTE?
AAF is a software implementa-
tion of SMPTE metadata and
SMPTE labels, designed
particularly to make it easy to
work with large collections of
interrelated sets of metadata and
essence. SMPTE “KLV” is at its
heart. Besides the ability to
format and manipulate metadata
itself, the AAF software toolkit
provides added capabilities for
management of metadata sets,
user extensions, and pluggable
modules.

AAF is moving through
committee in SMPTE. AES will
consider AAF for the object-
oriented description of projects.
Some elements of AAF have been
incorporated into MPEG-4, and
MPEG-7 is harmonizing
metadata with SMPTE. The Pro-
MPEG forum is studying AAF
compatibility.

AAF Developer Overview 3 11 April 2000

A Standard Format for File Exchange

The sheer number of available digital media file formats (AVI,

AIFF, DV, TIFF, etc.), each with its own strength or specific quality

(e.g. preferred compression codec, optimized file size, preferred

color resolution, or operating system platform), makes it necessary

to perform many file format conversions in the course of produc-

ing a high-quality end product.

The Advanced Authoring Format helps the content creation and

authoring process by addressing the compatibility between

formats. In this way, AAF allows users to apply their creative

energies to the quality of the media compositions, relieving them

from having to deal with unnecessary and painful interchange

issues. It also allows software development to focus on improve-

ments to the authoring application’s feature set.

Universal Digital Media Authoring

Multimedia authoring applications read and manipulate certain

types of media, and save the resulting file to their own proprietary

format, usually specific to a particular hardware platform, applica-

tion, or operating system. This approach generally makes the

reuse or repurposing of media extremely difficult. In particular, the

compositional metadata (the data that describes the construction

of the composition and not the actual program content itself) is not

transferable between authoring applications.

The Advanced Authoring Format defines authoring as the creation
of multimedia content including related metadata. In the authoring

process, it is important to record not only the creative decisions

that have been made, but also the steps followed to reach the final

output, the sources used to create the output, the equipment

configuration, intermediate data, and any alternative choices that

may be selected during a later stage of the process.

“ CNN/Turner

Broadcasting needs

standards to

describe complex

media and enable

interchange

between different

systems. We look to

the AAF Association

to move these

efforts forward.

Without this work,

vendors are faced

with developing

custom integration

that is costly, slow,

and not extensible.”

Gordon Castle, CNN

AAF Developer Overview 4 11 April 2000

The AAF Model

The Advanced Authoring Format is an industry-driven, cross-

platform, multimedia file format, based upon the SMPTE/EBU

model, that will allow interchange of data between AAF-compliant

applications. There are two kinds of data that can be interchanged

using AAF:

1. Audio, video, still image, graphics, text, animation, music, and other
forms of multimedia data. In AAF these kinds of data are called
essence data, because they are the essential data within a multime-
dia program that can be perceived directly by the audience.

2. Data that provides information on how to combine or modify
individual sections of essence data or that provides supplementary
information about essence data. In AAF these kinds of data are called
metadata, which is defined as data about other data. The metadata
in an AAF file can provide the information needed to combine and
modify the sections of essence data in the AAF file to produce a
complete multimedia program.

Together, the essence and metadata describe content varying in

complexity from simple to highly-structured. Essence, metadata,

and content correspond to a hierarchy of classes (see AAF Class
Model and Hierarchy on page 12).

Essence

AAF files can describe and contain a broad range of essence types

and formats. These essence types include the following:

• Video essence in various formats (RGBA, YCbCr)

• Sampled audio essence in various formats (AIFC, Broadcast WAVE)

• Static image essence

• MIDI music essence

• Text essence in various formats

• Compressed essence formats (M-JPEG, DV, MPEG)

In addition to the essence formats listed above, the AAF standard

provides a general mechanism for describing essence formats,

and defines a plug-in mechanism that allows applications to be

extended to support new types of essence data.

Essence source information describes the format of digital audio

and video data, and how the data was derived (the sampling

format and compression, if any, used). Source information can also

include tape timecode, film edgecode data, and non-standard

information such as “smart lens” data.

Video Essence
Digital film, HD, NTSC, PAL or
other moving picture source (e.g.
a source clip from a single video
track)

Audio Essence
AIFF, WAV, AU or other digital
audio source (e.g. a source clip
from a single audio track)

Other Essence
TIF, 3D, JPG, TXT or other digital
source (e.g. a titling overlay)

EssenceAUID
unique identifier which is a
SMPTE Universal Label conform-
ing to SMPTE 298M-1997 or
another 128-bit unique identifier

component
basic object that defines essence
in a track

composition package
metadata object that describes
how to combine and modify
content elements and content
items to produce a content
package

AAF file
storage wrapper data file that
stores essence and metadata in
objects that conform to the AAF
specification

essence
parts of content that directly
represent program material, such
as audio, video, graphic, still-
image, text, or other sensor data

file package
metadata object that describes an
essence component stored in a
digital form in a file

header
root object of the file that contains
the packages and EssenceData
objects in the file and defines
extensions to the classes used to
store objects in the file

interchange object
a set of metadata that includes
additional information to assist
AAF interchange

key length value (KLV)
a SMPTE metadata binary format

material package
metadata object that specifies
association and derivation
metadata; it provides a level of
indirection between a composition
package and a file source package
and synchronizes file source
packages

metadata
parts of content that contain data
used to describe essence or
provide information on its use

metadata object (package)
structure that has a globally
unique identity and describes
essence

object
a unique instance of a data
structure defined according to the
template provided by its class;
each object has its own values for
the variables belonging to its class
and can respond to the messages
(methods) defined by its class

User-Defined Essence
New digital source specified by
user (e.g. proprietary format)

Physical Essence
Physical source (e.g. D1 tape)

AAF Developer Overview 5 11 April 2000

Metadata

The number of distinct varieties of metadata is potentially limit-

less. SMPTE divides metadata into several categories, depending

upon its purpose. AAF supports these as properties in the AAF

data model.

• Identification and Location Metadata – comprises all forms of
metadata that can be used to uniquely identify an item, be it essence,
object, device or other. It is also used for metadata which is used to
locate essence data, metadata or objects.

• Administration Metadata – a business metadata class used for
the definitions of rights, user access, security classifications,
encryption, audience listings and other business information.

• Interpretive Metadata – partly for human-orientated metadata
types such as names, artists, organisations and classification. It is
also used for metadata which defines how to interpret subsequent
data types (such as a language descriptor).

• Parametric Metadata – describes signal coding parameters of all
forms, and device characteristics such as sensor parameters (e.g.
focal length) plus device storage and streaming parameters.

• Process Metadata – includes all items that describe how essence
is assembled, such as editing and compositional metadata. This
metadata may be used by a processor to create new material from
source material.

• Relational Metadata – describes how information is related and
provides, in effect, the ‘verbs’ of a metadata/essence ‘sentence’. This
metadata is used to describe the relationship between essence types,
metadata types and metadata to essence relationships.

• Spatio-Temporal Metadata – describes places and time includ-
ing angles, geo-spatial coordinates, dates, creation times, event
times, delays and durations.

Within each category, metadata may be further divided into

subcategories. Some varieties of metadata may be treated as

essence in certain circumstances. For example, within an Asset

Management system, a sequence of key phrases may be used to

index and describe the content, and should be regarded as

metadata; but if the same text is converted into captions and

inserted into a broadcast television signal, it can be regarded as

data essence.

Metadata Characteristics

Each of the metadata types described above has one or more

characteristics, adding more flexibility to the way in which

compositions can be described by AAF.

• Vital – metadata that is absolutely necessary for the operation of a
system. The specific set of vital metadata may be different for each
application, but it always includes at least the essential metadata.

Metadata

Compositional Metadata
Information describing the
structuring and layout of Essence
Components

Physical Source Metadata
Location of video tape or file,
plus timecode or edgecode

File Source Metadata
Information describing Essence
Components
(e.g. essence type)

package
the AAF term for “metadata
object”

packageID
value that defines the unique
identification of a package

physical source package
package that describes physical
media

property
element in a file that has a name,
type, and value

relational metadata
metadata that describes how to
synchronize or interleave essence

segment
component that has well defined
boundaries; a segment can be
used without any other compo-
nents in contrast to a transition,
which can only be used in a
sequence and need to be
surrounded by segments

sequence
an ordered set of components
arranged in a sequential order

SDTI-CP (SMPTE 326M)
The latest generation development
of the Serial Digital Interface
(SDI). SDTI-CP multiplexes both
essence and metadata streams
together and provides synchroni-
zation, all independent of the data
type.

source package
metadata object that describes an
essence component stored either
in a digital form or on a physical
media source

static metadata
metadata that describes the edit
interchange file as a whole

storage wrapper
persistent storage mechanism for
the storage of complex content
NOTE This mechanism allows
descriptive information to be
stored with the data in such a way
that it is possible to query the
wrapper file to find out the format
of the data and then to use that
information to read and interpret
the encapsulated data.

track
object in a package that describes
essence

Master Metadata
Information specifying location of
File Source metadata packages

Relational Metadata
Information related to essence
component interaction (e.g.
synchronization data)

AAF Developer Overview 6 11 April 2000

• Static – metadata that is related to the whole of a subsection of the
Content (for example a Content Item or Content Package)

• Variant – metadata that is related to a subsection of the Content
(e.g. a single Content Component, a Content Element, or a frame).
Variation will frequently be connected to the timing of the Content,
but may also be associated with other indexing of the Content.

• Transient – some metadata types may intentionally be destroyed
after they have served their useful purpose. Examples include QoS
Control, Machine Control, Error Management and Encoder Control

• Permanent – examples include essential metadata such as Unique
Material Identifiers (UMIDs)

Metadata may be kept with the associated essence or kept

elsewhere. Factors contributing to the choice include allocation of

available bandwidth, ease of access, and concern for systems

reliability and error recovery.

These characteristics of metadata are recorded in the relevant

standards documents and in the SMPTE Registry. Other character-

istics may well be identified in the future.

Metadata Sets

Metadata may be grouped into sets that are referenced as a single

item. Such groupings are known as metadata sets (see inter-
change objects on page 7). Sets can be referenced by a single key

value rather than by identification through each individual

metadata item; individual items within the sets may be identified

with sub-keys, or implicitly within fixed formatting of the set.

SMPTE defines the syntax of collections of metadata items called

Sets. In AAF, these are used extensively to represent Interchange

Objects. Packages are specific kinds of Interchange Objects.

“ The innovative AAF

specification supports

user-defined

extensions to the

basic format, and the

delivery of files that

include not only

these new extensions,

but also their full

descriptions.

Interaction between

AAF-compliant

application software

and a www-based

registry server allows

systems to define and

publicize templates

for files that are

tailored for specific

end-use applications,

such as transmission,

enhanced interactive

television, DVD

creation and

streaming media

authoring, and then

to produce and

validate such files.”

Brad Gilmer,
AAF Association

UMID
a type of Unique Content Identifier
described by SMPTE, used to
identify all kinds of Interchange
Objects in the system, both
permanent and transient

variant metadata
metadata that describes an
element or subsection within an
edit interchange file

vital metadata
metadata required by the system

XML
Extensible Markup Language — a
subset of the SGML document
language that allows tags to be
defined in a Document Type
Definition (DTD).

A Note About AAF Nomenclature
In the source code, Packages and Tracks are called “Metadata Objects
(MOBs)” and “Slots”. Early revisions of the Specification and API Reference
use these more software-oriented names exclusively; later revisions include
the more generic terms. Other terms that have been updated include:

UPDATED TERM SOFTWARE-ORIENTED EQUIVALENT TERM

Package ... Mob (MetadataObject or Object)
Material Package .. Master Mob
File Package .. File Source Mob
Source Package ... Physical Source Mob
Composition Package .. Composition Mob
Track .. Slot

AAF Developer Overview 7 11 April 2000

Content

In the simplest AAF structure, metadata and essence combine to

form a content element. Content elements can be grouped (with

metadata describing the grouping) into content items. Content

items and content elements can then be arranged into content
packages—the AAF equivalent of an authored multimedia

composition. Any of these can be represented as a binary file by

the addition of a wrapper.

The construction of the wrappers requires additional items of data.

This data is referred to as overhead. Overhead includes such

things as flags, headers, separators, byte counts, and checksums.

These content structures cover the basic needs of describing and

containing source material, finished material, sync relationships,

cut lists, and play lists. There are, however, many other kinds of

elements needed to build programs, including effects descriptions,

compositing information, and entire catalogs of source material.

The various kinds of elements are catalogued and described by

several dictionaries maintained by SMPTE (e.g. the metadata

dictionary, which contains all the basic descriptive elements).

One of the SMPTE dictionaries describes sets of metadata—items

grouped together for particular application purposes. “Sets” is the

generic term. Specific sets are called interchange objects.

In the SMPTE-derived AAF data model, all the constituent compo-

nents of content are represented as various classes of interchange

object. The data model describes how interchange objects may be

constructed, and how they can contain or reference (point to) other

Typical SMPTE/EBU File
The SMPTE/EBU definition of
Content Elements, Items,
Packages and Wrappers is the
basis for AAF. A rough corre-
spondence to familiar terms is
that a Content Element is a
source clip from a single video or
audio track, a Content Item is a
synchronized master set of clips
encompassing several tracks,
and a Content Package is an
edited composition of several
clips.

“ SMPTE has been

trying to find a way

to speed up the

standardization

process. The thing

about standards is

that it takes so long

to create them that,

by the time they’re

done, technology has

often marched on.

Now we’re looking at

a 90- to 180-day

timeframe to be able

to extend standards,

and actually to make

them available

electronically on the

internet.”

Merrill Weiss, SMPTE

“ …devices will be able

automatically to

download extensions

to standards. When

they encounter some

metadata that they

don’t recognize, they

can automatically go

find the definition,

download it and

work with it right

away by virtue of this

much speeded-up

standardization

extension process.”

Merrill Weiss, SMPTE

Content Item

Content Element

Content Item

Content Element

Content Element

Content Item

Content Package
Wrapper (or “Header”)

Content Element

Content Element

Content Element

Byte order of file’s data, modification date, AAF dictionary, pointer to ContentStorage, etc.

Content Element

Content Element

external
reference

AAF Developer Overview 8 11 April 2000

interchange objects. The resulting data structures, known as

complex content packages, can describe arbitrary levels of

editing and processing in the creation of a finished program.

Unique Content Identifiers

Unique Content Identifiers identify a specific piece of content

independent of where the content is stored and independent of

whether it is a copy or the original material. They are used to link

between uses of content and the content itself, through the

medium of an asset-management database.

AUIDs are a type of unique identifier used by AAF. They have a

defined mapping with SMPTE labels, and can be generated either

by a client application or from within the AAF SDK.

A UMID is a Universal Material Identifier that SMPTE uses to

identify essence and metadata. A UMID contains an AUID as one

of its fields.

Typical AAF File
In the EBU/SMPTE data model
used by AAF, all the constituent
components of content are
represented as various classes of
interchange object. The data
model describes how interchange
objects may be constructed, and
how they can contain or reference
(point to) other interchange
objects. The resulting data
structures can describe arbitrary
levels of editing and processing in
the creation of a finished program,
and are known as complex
content packages.

“ Since the

announcement of the

AAF initiative, the

standardization work

in SMPTE has pro-

ceeded to form a

consensus about the

formatting and the

basic dictionary of

global metadata

items. The AAF

initiative provides a

tangible implementa-

tion of these ideas”

Oliver Morgan, Avid

Metadata

CompositionMob

ContentStorage

Metadata

AAF Dictionary

AAF Composition
AAF Header

EssenceData

Byte order of file’s data, modification date, AAF dictionary, pointer to ContentStorage, etc.

EssenceDataMetadata

Identification

MasterMob PhysicalMob

CompositionMob MasterMob SourceMob SourceMob

external
reference

AAF Developer Overview 9 11 April 2000

TextVideo
Clip

MyApp (e.g. fire*, Media Composer)

Audio
Clip

myComposition.aaf

+ AAF Dictionary + Unique IDs + Header

Bitmap
Graphic

Vector
Graphic

Font

00:00:01 00:00:02 00:00:02 00:00:03

TheirApp (e.g. flame*, Henry)

00:00:01 00:00:02 00:00:02 00:00:03

AAF Export

AAF Import

Upon export, each source (or
“essence”) file is wrapped as an
AAF object. The wrapping process
includes the creation of metadata
that describes the essence file. In
the AAF model, each wrapped
essence and metadata pair is
referred to as a “content element”.

Content elements are organized
into a structure called a “content
item”. The content item includes
more metadata that describes the
constituent content items, as well
as their relationship to each other.

Finally, a file is created1 that ties
one or more content items into a
“content package”. The wrapper
for this file identifies it to
compliant applications as AAF. By
first reading the master metadata
in “myComposition.aaf”, TheirApp
is able to break it down into its
constituent content items and
elements. The metadata
associated with each of these
enables the composition to be
mapped to TheirApp’s native
architecture (except for “special
knowledge”, which may be
ignored). AAF provides a way to
avoid having to target the lowest-
common denominator while
allowing simpler applications to
use the information they
understand.

1 In practice, more than one .aaf file
may be created, due to the size of
typical high-end compositions.

The AAF format allows end users
to bring the many disparate
sources of a composition together
(if they choose) into one easily
managed file. In this example, a
series of source files are
assembled into a composition
using MyApp software. AAF-
compliant MyApp can export the
composition so that it will be
readable by TheirApp , or any
other AAF-compliant software. Any
“special knowledge” that forms
part of the original composition is
saved in such a way that, if
TheirApp cannot understand it,
the “special knowledge” can be
safely ignored while remaining
integral to the file. No information
is lost!

source file (essence)

composition data
internal to the application
(proprietary metadata)

essence + metadata
(in this example, stored
together; essence may be
stored outside the AAF file,
but its corresponding
metadata remains inside)

composition metadata,
master mobs, etc.

AAF file

Interchanging
Compositions via AAF

AAF Developer Overview 10 11 April 2000

The AAF File Format

AAF files are able to store a variety of media file formats and the

complex metadata that describes their usage. The file format

provides a structured container for essence and metadata in a

single object-oriented model for interchange. The AAF format

encapsulates essence—preserving its file-specific, intrinsic informa-

tion—as well as the authoring information (in and out points,

volume, pan, etc.) describing the essence and any interactions

with it. It supports efficient playback and incremental updates. AAF

is scalable, making it equally suitable for very high-end profes-

sional applications as well as those at the consumer level.

Other important features include:

• The ability to retain information about original sources for an edited
program—this makes it possible to easily regenerate a program from
its original sources, or to re-purpose sections of a program

• Modification history, making it possible to track the applications that
have been used to create and modify the program

• References to external media files, with files located on remote
computers in heterogeneous networks

• An extensible video and audio effects architecture with a rich set of
built-in base effects

• Support for a cross-platform binary plug-in model

• Support for output in XML format

Content Delivery

AAF is an authoring format, and does not specifically address the

issues associated with delivery. Nonetheless, the content created

using AAF in the authoring process will be delivered by many

different vehicles, including broadcast television, packaged media,

film, as well as over private networks and the internet. These

delivery vehicles will use data formats such as baseband video,

MPEG-2 Transport Stream, and the Advanced Streaming Format

(ASF). These formats do not need as rich a set of metadata as that

used during the authoring process. AAF files can be optimized for

delivery by “pruning”, or stripping out this metadata.

Microsoft Structured Storage
(MSS), one of the technical
underpinnings of AAF, refers to a
data storage architecture that uses
a “file system within a file”
architecture. This container format
is a public domain format,
allowing interested parties to add
future developments or enhance-
ments in a due process environ-
ment. Microsoft is specifically
upgrading the core technology
compound file format on all
platforms (Microsoft Windows®,
Apple® Macintosh®, UNIX) to
address the needs of AAF.

“ The AAF should

provide an end

to the islands of

incompatible auto-

mation that plague

our industry, and

the beginning of

complete digital

media environ-

ments built from

products from

multiple vendors.”

David Dale, Avid

AAF Developer Overview 11 11 April 2000

Client Applications & Utilities
Client applications implement all
the macroscopic behaviours of the
system, using the fundamental
services provided by the Data
Model Manager, and other system
services.
Utilities are specific client
applications with limited but
important functionality (e.g. File
Dumpers, Validators, Generators).
Typically they will be used for
system administration, testing, or
to help client developers.
Another kind of client application
converts between the SMPTE Data
Model and other formats (e.g.
serial interconnect formats,
proprietary formats, XML, and
SDTI-CP).
Conversion functions are created
as pluggable component software,
which can be made accessible to
multiple clients.

Data Model Manager
The Data Model Manager (DMM)
implements Persistence,
Transaction, and Navigation
services upon Interchange Objects,
which it exposes to clients through
the API.

Object Manager
The Object Manager (OM)
provides the basic functions of
Saving and Restoring objects and
sub-objects and maintaining the
relationships between them.

Storage System
The Storage System underlying
the Object Manager is normally
one of the file systems provided
by the OS. In the AAF SDK, this
function is provided by Microsoft
Structured Storage.

Operating System Platform
Underlying all the other subsys-
tems is the Operating System. One
of the challenges in designing the
DMM and OM was to keep them
separable from the Operating
System, in order to serve the
cross-platform interoperability
requirements of the clients.

Public Application Program
Interface (API)
The public API is the aspect of the
Data Model Manager that all
client applications see, and that
treats all potential clients equally.
• It is written in Interface
Definition Language (IDL), to
permit bindings to different
languages (e.g. C, C++) and object
brokers (e.g. Component Object
Model).
• It provides basic services:
persistence (save and restore),
transaction (add, modify, delete),
accessors (get, set), and navigation
(traversal, iteration, query).
• It makes full use of polymor-
phism.
• It has a very regular, predict-
able structure, to encourage
consistent coding style and allow
extension over time.
• It provides clear mechanisms
for extension of the Data Model,
so that new object types can be
linked into the API without
causing revision or recompilation
of the kernel software.

Data Model Manager (internal)
Beneath the public API there are
various interfaces and implemen-
tation helper functions that are
not expected to be directly called
by the client. It is here that much
of the design value of the Data
Manager is concentrated.
One of the benefits of using IDL to
define the public API is that the
unpublished implementation
details are defined separately,
reducing the temptation for clients
to use an internal function and
risk less than full error checking.

Object Management (internal)
The architecture separates Data
Model Management from generic
Object Management. The interface
between these two subsystems is
not public; the DMM interface
exposes the OM interface
polymorphically through the DMM
API.

Software Architecture

The most important goal of the AAF development was to make the

SMPTE Data Model readily accessible to software developers

throughout the industry and usable by a broad range of authoring

applications. The best vehicle for this is a software developers’ kit

(SDK) to present the SMPTE Data Model to developers through an

API supported on many computer platforms. Two of the most

important requirements are for cross-platform implementation and

for user extensibility.

Data Model Manager

Object Manager

Operating System & Storage

Binary File Bit StreamXML File

<TAG>XXX
 X XX X XX
</TAG>

Public DMM API

Client Applications & Utilities

AAF Developer Overview 12 11 April 2000

AAF Class Hierarchy

The AAF classes are used to describe multimedia compositions
and data. A class specifies an AAF object by defining what kind of
information it may contain and how it is to be used. Each AAF
class inherits from one immediate superclass, thereby
avoiding the problems associated with
multiple inheritance.

ContentStorage
Has the Mobs and
EssenceData objects
in a file. There is only
one ContentStorage
object per file

Describes essence
elements—a
component in a
TimelineMobSlot has a
duration ex-pressed in
edit units

An abstract class that
defines an item to be
referenced

ControlPoint
Specifies a value and a
time point and is used
to specify an effect
control value.

EssenceData The class
that contains
essence

Dictionary Contains Definition
objects.

Header
The storage wrapper
format has exactly
one Header object in
an AAF file.

The InterchangeObject class
is the root of the class

hierarchy defined by AAF

Describes the
format of content data
associated with a File
Source mob or of
media associated
with a Physical
Source mob.

Provides information
to help find a file that
contains the essence.

Identification
Provides information
about the application
that created or
modified the file.

Represents a
segment of essence
in a Package. Track
objects are owned by
Packages

Specifies a metadata
object, which can
describe a composition,
essence, or physical
media

PluginDescriptor
Identifies code objects
that provide a
DefinitionObject
implementation
e.g. CodecDefinition,
InterpolationDefinition

Specifies a control
argument for an effect.

TaggedValue Specifies a user-defined
tag, key and value.

Component

DefinitionObject

EssenceDescriptor

Locator

Track (MobSlot)

Package (Mob)

Parameter

InterchangeObject

The relation between edit units and clock time is determined by
the edit rate of the TimelineMobSlot that has the component. A
component provides a value for each edit unit of its duration.

A Package object has a Segment,
which can be a timeline, static, or event segment.

inheritance

reference

containment

Class

L E G E N D

concrete class

Class abstract class

AAF Object Model Structure
• Dictionary contains definitions,

such as Class Definition

• Packages are composed of a
tree structure of object
instances. Each object instance
belongs to a Class, which is
defined by a Class Definition

• Classes are defined by a class
hierarchy

• Objects consist of a set of
properties, each property has a
name, a type, and a value

• Package tree structure is formed
by Strong References,
containment

• References to uniquely
identified objects in the
dictionary is done by weak
reference

See “A Note About AAF
Nomenclature” on page 6

AAF Developer Overview 13 11 April 2000

Metadata

ContentStorage

Represents a segment of essence –
timeline, static, or event
�

Combines an ordered list of
segments and transitions
�

Represents and identifies the
source of the content data
�

�
Specifies how to combine,
modify, and synchronize
content data elements

Composition

Track

InterchangeObject

Sequence

Clip

1
1 .. *

1
1 .. *

1
1 .. *

Metadata

Describes and locates
physical tape (e.g. audio tape)
�

Describes and locates
essence data (files)
�

Provides access to Essence
independent of storage details
�

Describes and locates
physical film
�

Film Package Tape Package File Package Material Package

EssenceData EssenceData EssenceData EssenceData

inheritance reference

L E G E N D

Class concrete class Class abstract classcontainment

SegmentMob SourceReference

AAF Object Model Basics

Composition Packages describe editing/creative decisions
containing tracks with sequences and effects. Material Packages
provide a level of indirection that allows users to work with virtual
playable audio and video, while hiding storage details (such as
that video and audio are in separate files, that there may be
multiple versions of the video with different compressions, etc.)

File Packages describe the digital playable audio and video
stored in files. Tape and Film Packages describe the original
physical media. Packages contain Tracks.

A Sequence contains Source Clips, Effects, and Transitions that
are played in sequential order. The start time of each item in the
sequence is determined by when the previous item ends (unlike
an EDL where each clip has a specified start time).

The derivation/transformation of the media is described by the
chain of Source Clip to Package. A SourceClip in a Composition
Package points to the previous generation Package (Master, File,
Tape, Film) that describe the source of the media.

“ The fact that the AAF

is actively supported

by manufacturers,

broadcasters, and

post-production

houses shows a

common interest.

Everyone involved

stands to benefit

from co-operating

on a pragmatic

standard.”

Mark Horton, Quantel

See “A Note About AAF
Nomenclature” on page 6

AAF Developer Overview 14 11 April 2000

The AAF Software Development Kit

The AAF SDK Reference Implementation is an object-oriented,

platform-independent programming toolkit (with supporting

documentation) that allows client applications to access the data

stored in an AAF file. There are several reference platforms on

which the SDK has been built and tested. The toolkit is available

in source form.

The SDK also enables developers to create alternative implemen-

tations that access the data in an AAF file, based on the informa-

tion in the AAF Object Specification and the AAF Low-Level

Container Specification.

Microsoft’s Component Object Model (COM) is employed by the

SDK as a programming interface for client applications. COM

provides mechanisms for components to interact independently of

how the components are implemented.

AAF defines a base set of built-in classes. These built-in classes

can be used to interchange a broad range of data between

applications. Where applications have additional forms of data

that cannot be described by the basic set of built-in classes, AAF

provides a mechanism to define new classes.

Open Source

For any new software standard to be acceptable to a wide audi-

ence and portable to new platforms, the source code must be

available without barriers to developers. For the AAF SDK, this has

been achieved. Patent and intellectual property issues have been

resolved, and the source code is available for download and

compilation, without license fee or royalty. The AAF Association

aims to establish all the AAF SDK as Open Source with collabora-

tive development of new versions. The Open Source process will

get underway with the third developer release (DR3) in Summer

2000.

“ The source code of

AAF reference

implementation is

fully available, free

of charge and royalty,

to anybody in the

entire universe.”

Oliver Morgan, Avid

AAF Developer Overview 15 11 April 2000

SDK
System Requirements

Windows

Windows NT v4.0 with Service
Pack 4 or Windows® 2000
Professional Prerelease
(build 2000)
Microsoft® Visual C++® 6.0

Macintosh

Macintosh PPC with Mac® OS 7.6
or higher
CodeWarrior Pro3 updated to
CodeWarrior IDE 3.1
Required Libraries and Headers

UNIX/IRIX/Linux

SDK available with DR3
(July 2000)

Files Provided in the SDK Platform Developer Release
• Release notes, including license agreements, build instructions,

and a list of known bugs

• Header Files and Pre-built DLLs, Libs, and EXEs/Apps

• CodeWarrior® projects for AAF Reference Implementation on Macintosh
PPC (included only with Macintosh® installer)

• MS Visual Studio workspace and projects for AAF Reference Implementa-
tion on Windows NT (included only with Windows NT® installer)

• Source files for low level dumper utility program

• AAF Specification, AAFGuide and API documentation

• C++ source files for the examples (client applications)

• Source tree (code) for AAF Reference Implementation

• C++ source code that tests that the reference implementation
is executing correctly

• Source files for the utility programs

AAF Documents

The Advanced Authoring Format documentation includes:

• The AAF Object Specification
• The AAF SDK Reference Implementation

Methods and Interfaces
• The AAF SDK Reference Implementation

Developers’ Guide
• The AAF Low-Level Container Specification

Installation Configurations
1. End User: This kit is intended for end users who are using

applications that support AAF. This kit includes the libraries needed
to run applications that use AAF. It also includes an AAF/OMF
converter.

2. Application Developer: This kit is intended for developers who
are creating applications that use the AAF SDK. This kit installs the
header files and libraries needed to create application programs. It
also includes source code of example and test programs and binaries
of the example, test, and utility programs. Note that application
developers working with prerelease kits may choose to use the
Platform Developer Kit to make it easier to debug code.

3. Platform Developer: This kit is intended for developers who are
porting the AAF Reference Implementation to a new platform or who
are creating plugin codecs. This kit installs the complete AAF SDK
source tree with projects, binaries, and sources. It includes sources
for the examples, tests, and utilities as well as the reference imple-
mentation of the SDK.

“ The AAF is a major

part of the vision

that Microsoft has

been investing

heavily in for years.

Having a standard

interchange format

brings tremendous

benefits to every-

one in our

industry.”

Tom MacMahon,
Microsoft

AAF Developer Overview 16 11 April 2000

About the AAF Association

Founded in March 1998 and incorporated in February 2000, the

AAF Association Inc. is a broadly-based trade association intended

to promote the development and adoption of AAF technology

throughout the media industry. With representatives from some

major players in the industry (Avid, British Broadcasting Corpora-

tion, CNN/Turner, Discreet, Matrox, Microsoft, Pinnacle Systems,

Quantel, Sony, U.S. National Imaging & Mapping Agency, and

4MC), the AAF Association intends to help deliver the full benefits

of digital media to content creators including film, television, and

post-production professionals.

Membership in the AAF Association is open to any interested

parties. For more information, visit www.aafassociation.org.

Development Timeline

Initial work on what was to become the AAF software develop-

ment kit predates the EBU/SMPTE TFHS final report. Developer

Release 1 (DR1) was issued in October 1999. DR2 of the SDK

Version 1.0 will be available shortly. A third Developer Release

(featuring support for UNIX, XML, and various codecs) will mark

the start of final testing in products in mid-summer 2000, and the

End User Version 1 will be released in early Autumn 2000.

“ The BBC is committed

to improving the

links between

different stages of

the programme-

making process. With

solid industrial

backing and the AAF

Association to guide

its development, the

AAF format is on

course to deliver the

dream of seamless

transfer of content

between systems.”

Phil Tudor, BBC

Last update: 23 Mar 2000AAF Association

SDK
DR2

SDK
DR3

SDK/SPEC
1.5

SDK/SPEC
1.5

DR &
Demonstration

SDK/SPEC
1.5

Acceptance
SPEC
1.5

Adoption
SPEC
2.0

AdoptionReleaseAcceptance

Developer
Conference (Europe)

Developer
Conference (US)

Completion
& Release

SDK/SPEC
1.0

FEB
00

MAR
00

NAB
00

MAY
00

JUN
00

JUL
00

SIG
00

IBC
00

OCT
00

NOV
00

DEC
00

JAN
01

FEB
01

MAR
01

NAB
01

MAY
01

JUN
01

JUL
01

SIG
01

IBC
01

OCT
01

NOV
01

AAF Developer Overview 17 11 April 2000

Top 10 Reasons
for Joining the AAF Association
1. AAF provides a common format for interchanging digital content and

metadata that removes barriers to workflow, improves the creative
process, and saves countless hours of labour.

2. AAF allows for smooth interchange of content and metadata across
platforms, between applications, and between vendors.

3. The AAF SDK toolkit is available, without licensing fees, to software
developers who can leverage this technology. Ultimately, the AAF SDK
will be established as open source.

4. AAF addresses the issue of archiving of program content, which is a
critical application in fast-changing internet/media area. For example,
the United States National Science Foundation says, “Digital Libraries
have been identified as a “National Challenge”… National Challenges
are fundamental applications that have broad and direct impact on the
United States’ competitiveness and the well-being of its citizens.”1

1 “NSF announces awards for Digital Libraries Initiative”,
http://walrus.stanford.edu/diglib/pub/nsf.announce.html

5. Users can expect long term personal efficiency gains by the introduc-
tion of digital video and related metadata both in the workplace and in
homes. Such gains will be substantially increased if links between the
video and other program elements can be maintained and described.

6. AAF is the most comprehensive format available, providing its
adoptees with the potential to penetrate the widest market possible.

7. AAF, like Quicktime, allows stored data to contain information about
sequencing, timing, and special effects, but is much more geared to
formal compositions.

8. The AAF SDK has an automated test suite

9. AAF is extensible—as new codecs, transitions, effects and plug-ins
come into being, AAF will adapt and grow with the times.

10. AAF is a nonproprietary format created by broad industry consensus,
but is independent of any one player.

“ Working together,

we can help the

industry to realize

the full benefits of

going digital. For

the broadcast and

post-production

community, the

AAF Association

provides a unique

opportunity to

influence the work-

ing practices of the

future. For manu-

facturers, the AAF

Association means

participating in a

project that will have

a fundamental impact

on the future markets

for their products.”

Brad Gilmer,
AAF Association

Membership in the AAF

Association is open at

various levels to any

interested parties.

To learn more, please

contact us at:

info@aafassociation.org

For More Information

www.aafassociation.org
The AAF Association official site

www.ebu.ch/pmc_tfbrief.htm
The Joint EBU/SMPTE Task Force Technical Briefing held at IBC’98

www.ebu.ch/pmc_es_tf.html
The Joint EBU/SMPTE Task Force Final Report

www.eet.com/news/97/966news/global.html
Bringing “order to the chaos” of the digital-TV transition (J. Yoshida)

www.techweb.com/se/directlink.cgi?EET19970630S0001
RFTs focus on digital-TV interoperability (June 30, 1997)

www.digitaltelevision.com/dtvbook/appendixc.shtml
Metadata & Content: A Guide for Video Pros (L. CasaBianca & C. M. Okon)

www.avid.com/news/press_releases/product_news/aaf.html
Avid OMFI Selected as Foundation For Advanced Authoring Format

www.dv.com/magazine/1998/0798/0798author.html
The Quest for Full Media Interchange: An Overview of AAF

http://www.dv.com/magazine/1999/0899/roundtables0899.pdf
Metadata for the Masses — exchanging media and project information

