Advanced
Authoring
Format

Advanced Authoring Format

TNOQO9 — I/O Performance and the AAF
Toolkit.

April 5, 2004 Tim Bingham
Abstract

This Technical Note describes how to get the best 1/0 performance from the AAF Toolkit. It describes the
performance improvement options available to you as an AAF Toolkit client programmer.

Audience
All AAF Developers

Revision History

Revision | Description Author/ Date
Contributors
10 Initial revision Tim Bingham 7/16/2003
11 Add information on caching Tim Bingham 7/17/2003
and file open and create
latency.
12 Make it clear that Tim Bingham 9/5/03
IAAF{Random}RawStorage is used
for both metadata and essence.

13 Add note on how to determine | Tim Bingham 2/24/04
quickly if a given file is an AAF
file.

14 Explicitly state that the ISO C /O | Tim Bingham 4/5/04

functions don't support large
files (typically the limit is 2Gb).

Performing your own 1/O

To get the best performance from the toolkit you should perform the 1/O yourself avoiding using the built
in 1/O routines. Typically you will have spent time devel oping and optimizing your application’s 1/0O
routines to meet your performance constraints and to support large files. Using the techniques described in
this note you can have the AAF toolkit call those routines when you read or write essence or metadata
objects viathetoolkit. Additionally you control the file system callsto open/create and close the file at the
file system level. Note that standard toolkit interfaces are used and that no modifications to the toolkit are
required.

What are the built in I/O routines

There are two sets of built in /O routines-
those built in to the toolkit and coded to use the ISO C I/O library, and
those built in to Microsoft Structured Storage

You get the built in I/O routinesif you create/open the file with -
AAFFileOpenExistingRead
AAFFileOpenExistingM odify
AAFFileOpenNewModify
AAFFileOpenNewM odifyEx

Y ou also get the built in 1/0 routines if you create/open the file with AAFCreateA AFFileOnRawStorage()
using one of the built-in raw storage implementations created with -

AAFCreateRawStorageDisk

AAFCreateRawStorageCachedDisk

What’'s wrong with the built in I/O routines

The built in Microsoft Structured Storage I/O routines as very fast on alocal Windows disk but have the
following drawbacks—
The Macintosh implementations are slow
The Windows implementations are optimized for local Windows disks and perform poorly on
remote volumes and/or non-Windows file systems such as Unity

The built in toolkit routines are
coded for portability using the ISO C I/O library, the routinesin thislibrary
o aretypically slow
o don't support largefiles. Typically the size limitation is 2Gb (sizeof(long int) == 4)

How the AAF Toolkit accesses your I/O routines
The AAF toolkit calls your I/0 routines through the |AAFRawStorage and IAAFRandomRawStorage
interfaces which you implement using your routines. When you create or open an AAF file using the toolkit

you pass in your implementation of these interfaces. When the toolkit needs to perform 1/O it does so
through these interfaces and your I/O routines are called.

Recommended Approach
The recommended approach is as follows-

Create/open the AAF file using AAFCreateA AFFileOnRawStorage()

Passto AAFCreateA AFFileOnRawStorage() a custom implementation of
|AAF{ Random} RawStorage, this allows you to useyour own |/O routines.

If caching isdesired then it can be added to your custom implementation of
|AAFH Random} RawStorage by calling AAFCreateRaw StorageCached()

The sequence of callsisthus—
- Open/create afilein thefile system
Create an instance of your custom raw storage from the open file
AAFCreateRawStorageCached()
AAFCreateA AFFileOnRawStorage()
IAAFFile::Open()
Add objects tothe AAF file
IAAFFile::Save()
IAAFFile:Clos()
Closethefileinthefile system

What Functions do you need to implement ?

The |AAFRawStorage interface defines the following routines-
- IsReadable
Read
IsWriteable
Write
Synchronize

The |AAFRandomRawStorage interface defines the following routines—
ReadAt
WriteAt
GetSize
IsExtendable
GetExtent
SetExtent

In addition you will need to —
open/create afile system object (e.g. file handle)
construct an instance of your raw storage implementation from the file system object
close the file system object

See the source file ref-impl/include/ref-api/AAF.h for details.
Caching

Y ou may choose to apply caching to your implementation of |AAF{ RandomRawStorage using the function
AAFCreateRawStorageCached . This function will apply a page cache to your raw storage. You can
specify the page size and the number of pagesto cache. Choosing a page size that isthe sasme asor a
multiple of the disk sector sizeisusually agood idea. The cache is apage cache with LRU replacement.

If you do choose to apply a cache, your raw storage implementation will receive read and write calls for
whole pages only (except for the last page in thefile).

To use caching effectively you should be aware of the following points—

- There' scurrently no way for your raw storage implementation and/or the cache to distinguish
references to essence from references to metadata. While caching provides improvements for
metadata you will probably not want to use caching for essence. Therefore use of the page cacheis
best reserved for AAF files containing only metadata (i.e. with linked essence).

If the operating system and or your raw storage implementation is already using caching the
addition of caching within the AAF toolkit by using AAFCreateRawStorageCached, might
actually make performance worse.

Determining quickly if a file is an AAF file

The most general way to determineif agivenfileisan AAFfileisto call AAFFilelsAAFFile. This
function returns true (through the pFilel SAAFFile output parameter) if thefileisan AAFfile, and, if so, the
encoding (or file kind) through the pAAFFileKind output parameter.

If you are only interested in, say, AAF files encoded as structured storageit is faster to call
AAFFilelsAAFFileKind, which returns true (through the pFilelsAAFFile out put parameter) if thefileisan
AAF fileencoded as specified by the pAAFFileKind input parameter.

The function AAFFilelsAAFFile checksthe file against all known file kinds while the function
AAFFilelsAAFFileKind checks only against the specified file kind.

The performance difference between AAFFilelsAAFFile and AAFFilelsAAFFileKind is significant when
scanning large numbers of files.

Each function has a corresponding function that operates on an IAAFRawStorage instead of anamed file.
For AAFFilel sAAFFilethe corresponding function isAAFRawStoragel SAAFFile, and for
AAFFilelsAAFFileKind the corresponding functions is AAFRawStoragel SAAFFileKind.

Note that these functions check only that afile purportsto be an AAF file (usually by checking a signature
at the beginning); they don’t perform any validation of the file contents.

Example Code

See the source file test/com/ComModTestAAF/Modul eTests/ CAAFRandomRawStorageT est.cpp

