
AAF
Specification

Version 1.0 DR4

Developer Release 4 ii AAF Specification Version 1.0 DR4

Notice
Product specifications are subject to change without Notice. The software described in this
document is furnished under a license agreement, and may be used or copied only in accordance
with the terms of the license agreement.

THE ADVANCED AUTHORING FORMAT SPECIFICATION IS PROVIDED “AS IS” WITH NO
WARRANTIES WHATSOEVER, WHETHER EXPRESS, IMPLIED OR STATUTORY,
INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR OR INTENDED PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR
SAMPLE. IN NO EVENT WILL THE PROMOTERS OR ANY OF THEM BE LIABLE FOR ANY
DAMAGES, INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE,
INCIDENTAL, CONSEQUENTIAL, INDIRECT, OR SPECIAL DAMAGES ARISING OUT OF USE
OF THIS ADVANCED AUTHORING FORMAT SPECIFICATION WHETHER OR NOT SUCH
PARTY OR PARTIES HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2000 Advanced Authoring Format Association. All rights reserved

Trademarks
Avid, Avid Cinema, Digidesign, Media Composer, OMF, Open Media Framework, OMF
Interchange, Pro Tools, and Softimage are registered trademarks and Sound Designer II is a
trademark of Avid Technology, Inc., or its subsidiaries or divisions.

Adobe, After Effects, Photoshop, and Premiere are registered trademarks of Adobe Systems
Incorporated. Apple and Macintosh are trademarks of Apple Computer, Inc., registered in the
United States and other countries. DirectX, Microsoft, and Windows are either registered
trademarks or trademarks of Microsoft Corporation in the United States and other countries.
Matrox is a registered trademark of Matrox Electronic Systems Ltd. Pinnacle is a trademark of
Pinnacle Systems, Inc. Sound Forge is a registered trademark of Sonic Foundry, Inc. UNIX is a
registered trademark of The Open Group. All other trademarks contained herein are the property
of their respective owners.

Developer Release 4 iii AAF Specification Version 1.0 DR4

Table of Contents
1. Introduction 1

Background 1

Digital Essence Interchange 6

Data Encapsulation 6

Compositional Information 6

Media Derivation 7

Flexibility and Efficiency 7

Extensibility 7

Digital Essence Delivery 7

AAF File Format 8

AAF Specification Development 8

2. Introduction to Objects, Packages, and Essence Data 9
Advantages of Object Oriented Interchange 9

Object Model 9

Header Object 10

Dictionary 12

Essence Data and Metadata 12

Packages 12

Kinds of Packages 13

Physical Source Packages and Other Kinds of Source Packages 13

File Source Packages 13

Developer Release 4 iv AAF Specification Version 1.0 DR4

Material Packages 13

Composition Packages 14

Package Kind Summary 14

Components 18

File SourcePackages and EssenceData objects 19

How File Source Packages are Associated with Digital Essence Data 19

Kinds of Slots in Packages 20

How and Why One Package Refers to Another Package 20

Static Image Essence in Packages 23

Time-varying Video and Audio Essence in Packages 24

Event Data in Packages 27

3. Composition Packages 31
Composition Package Basics 31

Timeline Slots 32

Sequences 33

Transitions 33

Cuts and the Transition Cut Point 36

Treating Transitions As Cuts 36

Restriction on Overlapping Transitions 36

Static Slots 37

Combining Different Types of Slots 37

Conversion Operations 38

Operations 38

Effect Input Essence Segments 39

Filter Effects with One Input Essence Segment 39

Effects with Two Input Essence Segments 39

Effect Definitions 40

Effect Control Parameters 40

Rendered Effect Essence 41

Effects in Transitions 41

Scope and References 41

Why Use Scope References 42

How to Specify Scope References 43

Developer Release 4 v AAF Specification Version 1.0 DR4

Other Composition Package Features 43

Preserving Editing Choices with Selectors 43

Using Audio Fade In and Fade Out 44

4. Describing and Storing Essence 47
Overview of Essence 47

Describing Essence with Material Packages 48

Describing Essence with Source Packages 50

Sample Rate and Edit Rate in Timeline Essence 50

The Source Origin in Timeline Essence 51

Converting Edit Units to Sample Units 51

Describing Essence Format with Essence Descriptors 52

Describing Image Essence 54

Properties Describing Interleaving 55

Properties Describing Geometry 55

Properties Describing Sampling 56

Properties Describing Alpha Transparency 56

Properties Describing Compression 57

RGBA Component Image Descriptors 57

Color Difference Component Image Descriptors 57

Describing TIFF Image Essence 58

Describing Audio Essence 58

Describing Tape and Film 59

Describing Timecode 59

Describing Edgecode 60

Describing Essence with Pulldown Objects 61

What is Pulldown? 61

NTSC Three-Two Pulldown 62

Other Forms of Pulldown 63

Pulldown Objects in Source Packages 63

5. Extending AAF 65
Overview of Extending AAF 65

Defining New Effects 66

Defining New Classes 66

Developer Release 4 vi AAF Specification Version 1.0 DR4

Defining New Properties 67

Defining New Essence Types 67

Tracking Changes with Generation 68

6. AAF Class Model and Class Hierarchy 71
Object model goals 72

Classes and semantic rules 72

Class Hierarchy 73

Appendix A: AAF Object Classes for Essence and Metadata Interchange 77
AIFCDescriptor Class 77

CDCIDescriptor Class 78

CodecDefinition Class 81

CommentMarker Class 82

Component Class 82

CompositionPackage Class 84

ConstantValue Class 85

ContainerDefinition Class 85

ContentStorage Class 86

ControlPoint Class 87

DataDefinition Class 88

DefinitionObject Class 88

Dictionary Class 89

DigitalImageDescriptor Class 91

Edgecode Class 96

EssenceData Class 97

EssenceDescriptor Class 98

EssenceGroup Class 99

Event Class 100

EventSlot Class 101

FileDescriptor Class 102

Filler Class 103

Developer Release 4 vii AAF Specification Version 1.0 DR4

FilmDescriptor Class 103

GPITrigger Class 105

Header Class 105

HTMLClip Class 107

HTMLDescriptor Class 108

Identification Class 109

InterchangeObject Class 110

InterpolationDefinition Class 111

IntraFrameMarker Class 111

KLVData Class 112

Locator Class 113

MaterialPackage Class 113

MIDIFileDescriptor class 114

NestedScope Class 115

NetworkLocator Class 116

OperationDefinition Class 117

OperationGroup Class 119

Package Class 120

Parameter Class 122

ParameterDefinition Class 123

PluginDefinition Class 124

Pulldown Class 127

RGBADescriptor Class 129

ScopeReference Class 131

Segment Class 132

Selector Class 133

Sequence Class 134

Slot Class 135

SourceClip Class 136

SourcePackage Class 138

Developer Release 4 viii AAF Specification Version 1.0 DR4

SourceReference Class 139

StaticSlot Class 140

TaggedValue Class 140

TapeDescriptor Class 141

TextClip Class 142

TextLocator Class 143

TIFFDescriptor Class 144

Timecode Class 145

TimecodeStream Class 146

TimecodeStream12M Class 147

TimelineSlot Class 148

Transition Class 148

VaryingValue Class 150

WAVEDescriptor Class 151

Appendix B: AAF Classes for Defining Interchange Objects 153
ClassDefinition Class 153

MetaDefinition Class 154

PropertyDefinition Class 155

TypeDefinition Class 156

TypeDefinitionCharacter Class 156

TypeDefinitionEnumeration Class 157

TypeDefinitionExtendibleEnumeration 157

TypeDefinitionFixedArray Class 158

TypeDefinitionIndirect Class 159

TypeDefinitionInteger Class 159

TypeDefinitionOpaque Class 160

TypeDefinitionRecord Class 160

TypeDefinitionRename Class 161

TypeDefinitionSet Class 162

TypeDefinitionStream Class 162

Developer Release 4 ix AAF Specification Version 1.0 DR4

TypeDefinitionString Class 163

TypeDefinitionStrongObjectReference Class 164

TypeDefinitionVariableArray Class 164

TypeDefinitionWeakObjectReference Class 165

Appendix C Data types 167

Appendix D Conventions 175

Appendix E: Terms and Definitions 177

Developer Release 4 1 AAF Specification Version 1.0 DR4

1. Introduction
The Advanced Authoring Format, or AAF, is an industry-driven, cross-platform, multimedia file format that
will allow interchange of essence and compositional information between AAF-compliant applications.

Background
High-end, rich content authoring is a delicate struggle, wrestling together highly disparate source media,
and arranging all of these elements to form a coherent whole.

Consider the scenario of putting together all of the audio elements for a film soundtrack: this involves
transferring all of the music tracks, the ambient sound tracks, the performer's dialogue, and the Foley
effects from their original source, remixing or editing all of them, and doing split-second synchronizations
to the motion picture elements. This process requires a lot of information about each audio source
element, as well as information about other essence associated with it at the moment of playback.

The media industry uses a wide range of source materials, as well as a set of highly varied capture tools
with very different constraints (cameras, keyboards, audio input sources, scanners). This wide variety
leads to a great deal of time and effort spent converting data into formats that can be used by the wide
variety of authoring applications. Other issues include synchronization accuracy for time-based data (film,
video, audio, animation); operating system and hardware dependencies for interactive media titles; and
download, streaming and playback performance in Internet media applications.

AAF is an industry-driven, cross-platform, multimedia file format that allows interchange of data between
AAF-compliant applications. There are two kinds of data that can be interchanged using AAF:

• Audio, video, still image, graphics, text, animation, music, and other forms of multimedia data. In AAF
these kinds of data are called essence data, because they are the essential data within a multimedia
program that can be perceived directly by the audience

• Data that provides information on how to combine or modify individual sections of essence data or
that provides supplementary information about essence data. In AAF these kinds of data are called
metadata, which is defined as data about other data. The metadata in an AAF file can provide the
information needed to combine and modify the sections of essence data in the AAF file to produce a
complete multimedia program.

Developer Release 4 2 AAF Specification Version 1.0 DR4

The Society of Motion Picture and Television Engineers (SMPTE) has addressed these problems in the
dedicated hardware world by creating a set of standards that has worked very well through its history.
Computer-based media tool vendors have come up with many varied, mostly proprietary approaches that
all have many strengths as well as weaknesses. As digital technology for essence capture, editing,
compositing, authoring, and distribution approaches ubiquity, the industry demands better interoperability
and standard practices. This document is a specification for a new media industry standard file format,
designed to meet information interchange needs.

Incorporated in January 2000, the AAF Association Inc. is a broadly-based trade association intended to
promote the development and adoption of AAF technology throughout the media industry. With
representatives from many major players in the industry, the AAF Association intends to help deliver the
full benefits of digital media to content creators including film, television, and post-production
professionals.

Digital Essence File Formats and Issues
Rich media authoring often involves manipulating several types of digital essence files concurrently and
managing interactions and relationships between them. These types of essence generally fall into the
following categories:

• Motion Picture Film/Video

• Audio

• Still Images

• Animation

• 3-D Geometry

• Text

 Despite the relatively small number of categories, the sheer number of available digital essence file
formats, each with its own strength or specific quality (i.e. preferred compression codec, optimized file
size, preferred color resolution, support for transparency, support for sequential display, analog-to-digital
fidelity, or operating system platform), results in many file format-to-file format conversions to produce a
high-quality end product.

 The following formats are just a few of the many in use today:

• AVI and WAV files are widely used essence containers for video and audio, but they do not
support the storage of compositional information or ancillary data such as SMPTE timecode.

• Apple®’s QuickTime® is a technology that incorporates a file format standard optimized for play
back and streaming media, with software for handling a variety of media formats, invoking effects,
and playing QuickTime files. The metadata support in QuickTime is focused on information
needed to play or stream the file.

• Microsoft® DirectX® files are optimized for 3-D images, but do not support other time-varying
essence formats as well as AVI and WAV.

Developer Release 4 3 AAF Specification Version 1.0 DR4

• Open Media Framework® (OMF®) Interchange file format, developed by Avid Technology, Inc., is
a good step in the direction of interchange, but it has not been widely adopted by other imaging
tools vendors.

• The Advanced Streaming Format, or ASF, is a
new file format developed by Microsoft for the
delivery of streaming essence programs over
limited-bandwidth connections. While it meets
many of the needs of this market, content creation
file formats have differing needs.

• The Adobe Photoshop (PSD) file format is used
for storage of still image compositions and related
metadata information. While being recognized by
many content-creation applications for images, it
has limited capabilities for other essence data
types.

 The Advanced Authoring Format helps the content
creation and authoring process by addressing the
shortcomings of these and other formats. In this way, AAF
will allow creative energies to be more focused on the
quality of the compositions rather than dealing with
unnecessary and painful interchange issues, and allows
software development to focus on improvements to the
authoring application's feature set.

 Digital Essence Authoring
 The multimedia content authoring process generally
involves 1) opening one or more source essence files, 2)
manipulating or editing the essence, and 3) saving the
results. Multimedia authoring applications read and
manipulate certain types of essence and save the resulting
file to their own proprietary format, which is usually specific
to a particular hardware platform or operating system. This
closed approach generally makes the reuse or
repurposing of essence extremely difficult. In particular,
the compositional metadata (the data that describes the construction of the composition and not the actual
essence data itself) is not transferable between authoring applications.

Developer Release 4 4 AAF Specification Version 1.0 DR4

 The Advanced Authoring Format defines
authoring as the creation of multimedia
content including related metadata. In
the authoring process, it is important to
record not only the editing and scripting
decisions that have been made, but also
the steps used to reach the final output,
the sources used to create the output,
the equipment configuration,
intermediate data, and any alternative
choices that may be selected during a
later stage of the process.

 For example, an audio engineer might
be recording, editing and mixing the
sound for a video. She could record or
load the source media tracks, do gain
normalization, and then mix the tracks
while applying pan, volume, and time
compression transforms to the individual
tracks. When the work is complete, she
can save the files.

 If the authoring application saves the
resulting essence information as a
single, "flattened" file, then changes
cannot be made without going through
all of the steps and processes involved. Users may spend much time and energy reconverting and
transferring information and reentering instructions, and ultimately rewriting the entire file.

 If the authoring application saves the editing and transform data separately from the essence data, then
the essence can be changed directly by a sound-editing application without having to open the authoring
application. However, the metadata (data used to describe any compositional positioning, layering,
playback behavior, editing cut lists, essence mixing, or manipulation) is not accessible unless the
authoring application is opened.

 In an ideal environment a user would be able to use many different applications and not be concerned with
interchange. The essence data and the decisions made in one application would be visible to a user in
another application.

 The Advanced Authoring Format's unified interchange model enables interoperability between
applications. This offers distinct advantages over the current model of separate formats and authoring
tools for each essence type:

• The authoring process requires a wide range of applications that can combine and modify
essence. Although applications may have very different domains, such as an audio editing
application and a 3D graphics animation application, the authoring process requires both
applications to work together to produce the final presentation.

• Applications can extract valuable information about the essence data in an AAF file even when it
does not understand the essence data format. It can display this information, which allows the
user to better coordinate the authoring process.

Developer Release 4 5 AAF Specification Version 1.0 DR4

 By enabling interoperability between authoring applications, AAF enables the user to focus on the creative
production processes rather than struggling with conversions during the authoring and production phases
of the project. Although there are many other issues related to completely transparent interoperability, the
significant benefit that AAF provides to end users is assurance that compositions output by AAF-compliant
applications will be accessible by the right tool for the job, without risk of being "stranded" by proprietary
file format restrictions.

 The authoring applications that can use AAF for interchange include:

• Television studio systems, including picture and sound editors, servers, effects processors,
archiving, and broadcast automation systems

• Post-production systems, including digitization, offline editing, graphics, compositing, and
rendering systems

• Image manipulation applications, including palettizing tools

• Audio production/engineering systems, including multitrack mixers and samplers

• 3D rendering systems

• Multimedia content creation systems, including scripting, cataloging, titling, logging, and content
repackaging and repurposing applications

Developer Release 4 6 AAF Specification Version 1.0 DR4

• Image and sound recording equipment, including cameras and camcorders, scanners, telecines,
sound dubbers, disk recorders, and data recorders

 Digital Essence Interchange
 The Advanced Authoring Format provides applications with a mechanism to interchange a broad range of
essence formats and metadata, but applications may have interchange restrictions due to other
considerations. For this reason, it is important to understand the different kinds of interchange possible
and to describe the various levels of interchange between authoring applications.

 The following is a general description of the levels of AAF interchange that applications can adopt. For
detailed information on a specific product's AAF support level, see that product's documentation.

• Interchange of limited set of essence data

• Interchange of broad set of essence data with some related metadata

• Interchange of essence data and rich set of metadata including compositions but having limited
support for some essence types

• Full interchange of all essence types and all metadata described in this specification and
preserving any additional private information stored in the AAF file

 The Advanced Authoring Format is designed to be a universal file format for interchange between
systems and applications. It incorporates existing multimedia data types such as video, audio, still image,
text, and graphics. Applications can store application-specific data in an AAF file and can use AAF as the
application's native file format. AAF does not impose a universal format for storing essence content data.
It has some commonly used formats built in, such as CDCI and RGBA images, WAV and AIFC audio, but
also provides an extension framework for new formats or proprietary formats. As standard formats for
essence are adopted by groups such as the SMPTE and the Audio Engineering Society (AES), AAF will
provide built-in support for these formats.

 Data Encapsulation
 At its most basic level, AAF encapsulates and identifies essence data to allow applications to identify the
format used to store essence data. This makes it unnecessary to provide a separate mechanism to
identify the format of the data. For example, AAF can encapsulate and label WAV audio data and RGB
video data.

 Compositional Information
 The actual audio, video, still, and other essence data makes up only part of the information involved in
authoring. There is also compositional information, which describes how sections of audio, video or still
images are combined and modified. Given the many creative decisions involved in composing the
separate elements into a final presentation, interchanging compositional information as well as essence
data is extremely desirable, especially when using a diverse set of authoring tools. AAF includes a rich
base set of essence effects (such as transitions or chroma-key effects), which can be used to modify or
transform the essence in a composition. These effects use the same binary plug-in model used to support
codecs, essence handlers, or other digital processes, used to process the essence to create the desired
impact.

Developer Release 4 7 AAF Specification Version 1.0 DR4

 Media Derivation
 One of AAF's strengths is its ability to describe the process by which one kind of media was derived from
another. AAF files contain the information needed to return to an original media source in case it needs to
be used in a different way. For example, when an AAF file contains digital audio and video data whose
original source was film, the AAF file may contain descriptive information about the film source, including
edgecode and in- and out-point information from the intermediate videotape. This type of information is
useful if the content creator needs to repurpose material, for instance, for countries with different television
standards. Derivation information can also describe the creation of computer-generated essence: if a
visual composition was generated from compositing 3D animation and still images, the AAF file can
contain the information to go back to the original animation sources and make changes without having to
regenerate the entire composition.

 Flexibility and Efficiency
 The Advanced Authoring Format is not designed to be a streaming essence format, but it is designed to
be suitable for native capture and playback of essence, and to have flexible storage of large data objects.
For example, AAF allows sections of data to be broken into pieces for storage efficiency, as well as
including external references to essence data. AAF also allows in-place editing; it is not necessary to
rewrite the entire file to make changes to the metadata.

 Extensibility
 The Advanced Authoring Format defines extensible mechanisms for storing metadata and essence data.
This ensures that AAF will be able to include new essence types and essence data formats as they
become commonly used. The extensibility of the effects model allows ISVs or tool vendors to develop a
rich library of new and engaging effects or processes to be utilized with AAF files. The binary plug-in
model gives AAF-compliant applications the flexibility to determine when a given effect or codec has been
referenced inside of the AAF file, to determine if that effect or codec is available, and if not, to find it and
load it on demand.

 Digital Essence Delivery
 In contrast to authoring systems, delivery systems and mechanisms are primarily used to transport and
deliver a complete multimedia program. Although it would be ideal to use a single format for both
authoring and delivery, these processes have different requirements. With authoring as its primary focus,
AAF's metadata persistence enables optimal interchange during the authoring process. By allowing the
content files to be saved without the metadata (that is by stripping out the metadata or flattening the file),
AAF optimizes completed compositions for delivery, without restricting features needed for authoring.

 From a technical standpoint, digital media content delivery has at least two major considerations: 1) target
playback hardware (TV, audio equipment, PC) and 2) distribution vehicle (Film, Broadcast TV, DVD and
other digital media, and network). When content is delivered, the delivery format is usually optimized for
the particular delivery vehicle (DVD, DTV, and others), and the essence data is often compressed to
conserve space or enable fast download.

 We expect that the content created using AAF in the authoring process will be delivered by many different
vehicles, including broadcast television, packaged media, film, and networks. These delivery vehicles will
use data formats such as baseband video, MPEG-2 Transport Stream, QuickTime 4, and the Advanced

Developer Release 4 8 AAF Specification Version 1.0 DR4

Streaming Format (ASF). These formats do not need the rich set of metadata used during the authoring
process, and can be optimized for delivery by stripping out this metadata or flattening the file.

 AAF File Format
 The Advanced Authoring Format is a structured container for essence and metadata that provides a single
object-oriented model to interchange a broad variety of essence types including video, audio, still images,
graphics, text, MIDI files, animation, compositional information and event triggers. The AAF format
contains the essence assets and preserves their file-specific intrinsic information, as well as the authoring
information (in- and out-point, volume, pan, time and frame markers, and so on) involving those essence
assets and any interactions between them.

 To meet the rich content authoring and interchange needs, AAF must be a robust, extensible, platform-
independent structured storage file format, able to store a variety of raw essence file formats and the
complex metadata that describes the usage of the essence data, and must be capable of efficient
playback and incremental updates. As the evolution of digital media technology brings the high-end and
low-end creation processes into convergence, AAF must also be thoroughly scalable and usable by the
very high-end professional applications as well as consumer-level applications.

 Structured storage, one of the technical underpinnings of AAF, refers to a data storage architecture that
uses a "file system within a file" architecture. This container format is to be a public domain format,
allowing interested parties to add future developments or enhancements in a due process environment.
Microsoft is specifically upgrading the core technology compound file format on all platforms (Microsoft
Windows®, Apple® Macintosh®, UNIX®) to address the needs of AAF, for instance, files larger than 2
gigabytes and large data block sizes.

 Other important features of AAF include:

• Information about the original sources retained by AAF, so that the resulting edited essence can
be traced back to its original source

• References to external essence files, with files located on remote computers in heterogeneous
networks

• An extensible video and audio effects architecture with a rich set of built-in base effects

• Support for a cross-platform binary plug-in model

 AAF Specification Development
The AAF Association will ensure that AAF remains an open public standard without bias or prejudice. The
AAF Association will also drive the continued advancement of the AAF technology in the future.

Developer Release 4 9 AAF Specification Version 1.0 DR4

 2. Introduction to Objects, Packages,
and Essence Data
 Advantages of Object Oriented Interchange
 The Advanced Authoring Format provides an object-oriented mechanism to interchange multimedia
information.

 Object-oriented interchange has the following advantages:

• Objects provide a framework for containing and labeling different kinds of information

• Objects make it possible to treat different items in the same way for attributes they share. With an
AAF file:

• one can find out the duration of video data, audio data, MIDI file data, or animation data,
without having to deal with their differences.

• one can play audio or video data either contained within the AAF object, or stored in an
external file and referenced by the AAF object.

• When the information becomes very complex, objects provide a mechanism to describe it in a
structured way. Some simple summary information can be easily obtained.

 Although simple interchange is easily done without using an object model, the object model provides a
framework to handle more complex interchanges. The structured approach of the object model makes it
easier to describe complex data.

 Object Model
 This interchange format provides an object-oriented mechanism to interchange multimedia information.

 Object-oriented interchange has the following advantages:

Developer Release 4 10 AAF Specification Version 1.0 DR4

• Objects provide a framework for containing and labeling different kinds of information

• Objects make it possible to treat different items in the same way for attributes they share.

• One can find out the duration of video data, audio data, MIDI file data, or animation data, without
having to deal with their differences.

• One can play audio or video data either contained within an object, or stored in an external file and
referenced by an object.

• When the information becomes very complex, objects provide a mechanism to describe it in a
structured way. Some simple summary information can be easily obtained.

 Although simple interchange is easily done without using an object model, the object model provides a
framework to handle more complex interchanges. The structured approach of the object model makes it
easier to describe complex data.

 Header Object
 An interchange file contains:

• Packages and the objects they have

• Essence data

• One Header object and its related objects

 The Header object and its related objects are in an interchange file so that Packages and Essence data,
which contain the useful information, may be accessed.

 Each object in an interchange file belongs to a class. The class defines the how the object may be used
and the kind of information it stores. An object consists of a set of properties. Each property has a name,
a type, and a value. An object's class defines the properties that it may have.

 This standard defines classes using a class hierarchy, in which a subclass inherits the properties of its
superclass. All classes are subclasses of the InterchangeObject class.

 Using an object-oriented mechanism makes it easier to extend this interchange standard, and it provides
a flexible framework that will work for interchange between applications with disparate data models.

 The storage wrapper format has exactly one Header object in an AAF file. The Header object owns all
other objects in the file This ownership relationship is specified by the StrongRef, StrongReferenceVector,
and StrongReferenceSet property types.

 There shall be exactly one Header object. The Header object shall specify the following

 a) Byte order used to store data in the file

 b) Date and time that the file was last modified; if the file has not been modified the date and time
that the file was first created shall be specified as the modification date and time

Developer Release 4 11 AAF Specification Version 1.0 DR4

 c) ContentStorage object that has all Packages (Packages) and EssenceData objects

 d) Dictionary object that has all definitions

 e) Version number; files conforming to this document shall specify a version number 1.0; future
revisions of this document may specify a higher version number

 f) An ordered set of identification objects that provide information about the applications that created
or modified the file

 Figure 2-1 illustrates a typical AAF file.

Header

Dictionary

MetaDictionary

Composition Package

Material
Package

Source
Package

Material
Package

Source
Package

Essence Data Essence Data

Content Storage

Identification

 Figure 2-1  Typical AAF file with Packages and EssenceData objects

Developer Release 4 12 AAF Specification Version 1.0 DR4

 Dictionary
 The Dictionary has ClassDefinitions, PropertyDefinitions, TypeDefinitions, DataDefinitions,
ParameterDefinitions, and EffectDefinitions. If an AAF file contains any classes, properties, types, data
definitions, parameter definitions, or effects that are not defined by this document, the Dictionary shall
have the definition for these extensions to this document.

 Essence Data and Metadata
 Essence data is picture, sound, and other forms of data that can be directly perceived. Metadata is data
that describes essence data, performs some operation on essence data, or provides supplementary
information about the essence data. For example, digitized sound data is essence data, but the data that
describes its format, specifies its duration, and gives it a descriptive name is metadata.

 Much of the creative effort that goes into a multimedia presentation is represented by metadata. How one
section transitions into another, how special effects modify the data we perceive, and how all the different
kinds of primary data are related to each other (such as synchronizing picture and sound) are all
represented as metadata. This interchange format provides a way to interchange this rich set of metadata.

 Packages
 A Package (Package) is an object that has a SMPTE universal label and describes essence. A Package is

 A Package (Package) is an object that has a universal identifer and consists of metadata. Packages
describe how essence data is formatted or how separate pieces of essence data are combined or
composed. Packages are very general and can be used to describe many different kinds of essence data:
video, sound, still picture, text, animation, graphics, and other formats.

 Packages have names and descriptions, but are primarily identified by a unique identifier, which is called a
PackageID.

 A Package can describe more than one kind of essence. For example, a Package can have audio, video,
still image, and timecode data. A Package has one or more Slots. Each Slot can describe only one kind of
essence data. A Slot can be referenced from outside of the Package. For example, a Package can have
two Slots with audio, one Slot with video, three Slots with still images, and two Slots with timecode. Each
Slot in a Package has a SlotID that is unique within the Package. To reference the essence data in a Slot,
the PackageID and the SlotID is used.

 The following sections describe:

• Kinds of Packages

Developer Release 4 13 AAF Specification Version 1.0 DR4

• How a Package is associated with essence data

• Kinds of Slots

• How one Package references another

• How time-varying essence data, such as audio and video, is described in Packages and slots

• How other kinds of essence data, such as still images, are described in Packages and slots

 Kinds of Packages

 There are different kinds of Packages, which have metadata that is used in different ways.

 Physical Source Packages, which describe media that was used to generate the digital essence data.
For example a Physical Source Package can describe a videotape that was digitized to create digital video
data and digital audio data

 File Source Packages, which describe the digital essence data and provide a mechanism to locate the
digital essence data

 Material Packages, which provide information that helps locate the File Source Packages

 Composition Packages, which contain the creative decisions about how essence data is to be presented

 Physical Source Packages and Other Kinds of Source Packages

 Physical Source Packages have descriptive information that makes it possible to identify the actual
videotape or film. They can also have timecode or edgecode information used to find the section of tape
or film that corresponds to a frame in the associated digital essence data.

 File Source Packages

 File Source Packages describe the format of the digital essence data and provide a mechanism to access
the digital essence data. File Source Packages have information such as:

• The format used to store the digital essence data, such as WAVE and AIFC for audio and RGBA,
MPEG, and JPEG for video

• The number of samples or frames for digital audio and video data

• The kind of compression used

• The number of pixels and the aspect ratio for picture data

 Material Packages

 Material Packages provide an association between Composition Packages, which describe the creative
decisions, and File Source Packages, which describe and identify the essence data. Material Packages

Developer Release 4 14 AAF Specification Version 1.0 DR4

insulate the Composition Package from the detailed information about how the essence data is stored.
Material Packages can describe:

• How video and audio digital essence data are synchronized

• How multiple objects containing digital essence data represent different digital versions of the
same original essence data - the versions may be different in the amount of compression used to
or in the kind of format used to store it

• Effect descriptions, such as color correction, that do not represent a creative decision but instead
correct an error in essence acquisition or conversion

 Composition Packages

 Composition Packages describe the creative editing and composing decisions that combine individual bits
of essence data into a presentation. A Composition Package can describe creative decisions like the
following:

• The audio track contains "Also Sprach Zarathustra" when the video track showed the monolith in
the Stanley Kubrick film 2001: A Space Odyssey

• The pacing of the cuts between shots in Alfred Hitchcock's thrillers

• How different still images are composed into a single image

• How a special effect distorts a video image to make it appear as if it were a reflection on a pool of
water

 Package Kind Summary

 Table 2-1 summarizes the different kinds of Packages.

 Table 2-1 – Kinds of Packages

 Kind of Package Function

 Composition Package Describes creative decisions on how to combine or modify essence:
 Decisions on order of essence data
 Decisions on placement of essence data
 Decisions on effects that modify or combine essence data

 Material Package Collect and possibly synchronize related essence data; provides
indirect access to essence data, which is independent of storage
details

 File Source Package Provides direct access to and describes format of digital essence data
that is (or can be) stored in a computer file

 Physical Source Package Describes physical media such as a videotape or film

Developer Release 4 15 AAF Specification Version 1.0 DR4

 A CompositionPackage describes how to combine individual essence elements to produce a program.

Developer Release 4 16 AAF Specification Version 1.0 DR4

Interop Demo :
Compos itionPackage

Interop Video :
TimelineSlot

 : Sequence

Ref to Intro to Interop Material
Package : SourceCl ip

Int ro to Interop :
Mat erialPackage

Intro Video :
TimelineSlot

Ref to Interop Question File
Source Package : SourceClip

Video Int erop Question File
Source : SourcePackage

Reference to Interop Day 1 Tape
Package : SourceClip

 :
TimelineSlot

 :
RGBADescriptor

Interop Tape 1 :
SourcePackage

 : TapeDescriptor :
TimelineSlot

 : SourceClip

 :
TimelineSlot

:
Tim ecode

 :
EssenceData

Interop Film Source :
SourcePac kage

 :
FilmDescriptor

 :
TimelineSlot

 :
TimelineSlot

 : SourceClip : Edgecode

Composition
Pac kage

Materia l P ackage

File Source
Package and
Essence Data

Tape Source
Package

Film Source
Package

F

F

F

F

F

F

F F

F

F

F

F F F

F

F

F

F F F

F F

Developer Release 4 17 AAF Specification Version 1.0 DR4

 Figure x-x: Relationships Betweeen Packages Describe Essence Derivation

 A SourcePackage describes the format and derivation of essence stored in digital forms or stored on
physical media, such as videotape or film. A SourcePackage shall have a EssenceDescriptor object that
specifies the format of the essence. If the SourcePackage describes essence stored in a computer file, it
shall have a FileDescriptor and is described as a File SourcePackage. If the SourcePackage describes
essence stored on physical media, such as videotape or film, it is described as a Physical
SourcePackage.

 A MaterialPackage describes how individual essence elements are to be synchronized or interleaved.
MaterialPackages provide a level of indirection between CompositionPackages and SourcePackages.

 A Package shall have a unique identification, which is called a PackageID. A PackageID has an globally
unique value and is specified using the PackageID property type, which holds a SMPTE UMID, a 32-byte
unique identifier.

 A Package shall have one or more Slots Each Slot describes an element of essence that can be
referenced. A Slot shall specify an integer identifier, which is called a SlotID. Each Slot shall have a
Segment object. A Slot can be a TimelineSlot, a StaticSlot, or an EventSlot. A TimelineSlot
describesessence that varies over time, such as audio or video data. A StaticSlot describes essence that
has a value that has no relationship to time, such as a static image. An EventSlot describes essence that
has values at specified points in time, such as instructions to trigger devices at specified times or
instructions to display an interactive region during a specified time in a program.

 A Package can reference another Package to describe the source or derivation of the essence. A
Package refers to another Package by having a SourceClip object. An SourceClip object has a weak
reference to a Package using its identifying PackageID value; shall identify a Slot within the referenced
Package with a SlotID value; and when referencing a TimelineSlot shall specify an offset in time within the
referenced TimelineSlot.

 If a Package owned by a ContentStorage object has a reference to a second Package, then the
ContentStorage shall also own the second Package.

 A SourcePackage may desribe derivation metadata, which describes a physical source that was used to
generate the essence component. If the SourcePackage describes derivation metadata, then the
SourcePackage shall a SourceClip that specifies the PackageID of the Physical SourcePackage that
describes the physical media source. If there is no previous generation of physical media source, then the
File SourcePackage shall has a SourceClip that specifies a SourceID value of 0, a SourceSlotID value of
0, and, in TimelineSlots, a StartTime value of 0.

 A PackageID is globally unique. Two Packages in an AAF file shall not have the same PackageID. A
Package in one AAF file may have the same PackageID as a Package in another AAF file under either of
the following conditions:

 a) One Package is a duplicate of the other

 b) One Package is a modified version of the other subject to the restrictions on modifications
described in this clause

Developer Release 4 18 AAF Specification Version 1.0 DR4

 The type of Package determines the kind of modifications that can be made to it and still retain its identity.

 The information in a file source Package describing the format of essence is immutable and cannot be
modified. Modifications to a file source Package are limited to modifications to descriptive metadata and to
the following limited modifications when the essence is being created or derived:

 When creating essence or deriving one form of essence from another form, it may be
necessary to create or derive the essence in steps. In this case, the SourcePackage can
be modified to describe the additional essence that is incorporated in a step. This should
be done in a manner that does not invalidate a reference to a section of the essence that
was previously created.

 A SourcePackage describing physical media may describe timecode information and may describe
edgecode information. This timecode and edgecode information describes the timecode and edgecode
that is present in the physical media.

 A MaterialPackage may be modified by replacing a reference to a SourcePackage with a reference to
another SourcePackage or it may be modified by inserting a reference to an alternate SourcePackage.
The modifications are subject to the restriction that the replacement or alternate SourcePackages should
be representations of the same physical media as the originally referenced SourcePackage.

 A CompositionPackage may be modified in any way.

 Components
 Components are essence elements. A component in a TimelineSlot has a duration expressed in edit units.
The relation between edit units and clock time is determined by the edit rate of the TimelineSlot that has
the component. A component provides a value for each edit unit of its duration.

 The kind of value a component provides is determined by the component’s data kind. A component can
have a data kind that corresponds to a basic kind of essence, such as sound or picture or a kind of
metadata such as timecode.

 The Component class has two subclasses: Segment and Transition.

 The Segment class subclasses include the following:

 a) SourceClip which references a section of a Slot in another Package; for example a SourceClip in
a TimelineSlot can describe video data

 b) Sequence which specifies that its set components are arranged in a sequential order; in a
TimelineSlot, the components are arranged in sequential time order

 d) Effect which specifies that either two or more Segments should be combined using a specified
effect or that one Segment should be modified using a specified effect

 e) Filler which defines an unspecified value for its duration

Developer Release 4 19 AAF Specification Version 1.0 DR4

 A Transition object shall be a member of a Sequence’s set of Components and it shall be preceded by a
Segment and followed by a Segment. A Transition causes the preceding and following Segments to be
overlapped in time and to be combined by the Transition’s effect.

 File SourcePackages and EssenceData objects
 A File SourcePackage describes essence and is used to access it, but does not own it. This document
separates the description and the storage of the essence for the following reasons:

 a) Audio and video data and other essence can be very large and may need to be stored in a separate
file, on a different disk, over a network, or temporarily deleted to free disk space. Having the File
SourcePackage separate from the essence provides more flexible storage options while still allowing the
composition to use the same access mechanism.

 b) Audio and video data or other essence may be used in more than one CompositionPackage and
these CompositionPackages can be in different files. Separating the File SourcePackage from the
essence means that only the information in the File SourcePackage needs to be duplicated.

 The essence described by a File SourcePackage can be stored in three ways:

 1. In a EssenceData object in the same file as the SourcePackage

 2. In a EssenceData object in a different file, which must contain a duplicate of the
SourcePackage

 3. In a data file that is not a wrapper file

 The PackageID connects the File SourcePackage to the essence if it is stored in a EssenceData object..
The File SourcePackage and its corresponding EssenceData object have the same PackageID value.

 If the essence is stored in a data file that is not a wrapper file, then the data file is identified by locators in
the essence descriptor. However, since there is no PackageID stored with this essence, it is difficult to
identify a data file if the file has been moved or renamed.

 How File Source Packages are Associated with Digital Essence Data

 File Source Packages and Digital essence data are associated by having the same PackageID. Since the
ContentStorage object that has all the Packages and Essence data objects in the file, applications can
find the Essence data object associated with a File Source Package by searching for the appropriate
PackageID.

 Digital essence data may also be stored in a non-container file. In some cases, the digital essence file
format has a mechanism to store a PackageID. In these cases, applications can still use the PackageID to
associate the File Source Package with the digital essence data. When there is no mechanism to store a
PackageID with the digital essence data, interchange files use specialized locator objects to associate a
File Source Package with the digital essence data.

Developer Release 4 20 AAF Specification Version 1.0 DR4

 Kinds of Slots in Packages

 Each kind of Slot defines a specific relationship between essence data and time. This standard currently
defines the following kinds of Slots:

• Static Slot

• Timeline Slot

• Event Slot

 A Static Slot describes essence that does not vary over time. A Static Slot may describe a static image or
some other static essence such as text.

 A Timeline Slot describes essence that varies with a fixed, predictable interval or continuously over time.
For example, digital audio, video, and film have a fixed, predictable sample or frame rate, and analog
audio varies continuously over time.

 An Event Slot describes essence that has an unpredictable relationship with respect to time. GPI (General
Purpose Interface) events and MIDI are examples of irregularly timed events.

 Table 2-2 summarizes the different kinds of Slots.

 Table 2-2: Kinds of Slots

 Kind of Slot Function

 Static Slot Describes essence data that has no specific relationship to time, such as static
images or static text.

 Timeline Slot Describes essence data that has a fixed or continuous relationship with time, such
as audio, film, video, timecode, and edgecode

 Event Slot Describes essence data that has an irregular relationship with respect to time,
such as GPI events, MIDI, interactive events, and user comments associated with
specific times

 How and Why One Package Refers to Another Package

 A Package can have a reference to a Slot in another Package. Packages may reference other Packages,
for example, to identify a original and unmodified essence data. A Source Reference identifies the
referenced Package by specifying its PackageID and specifies the associated Slot by specifying its
PackageID.

 If a Package describes the original essence data, it has Source Clips that do not have a SourceID
property.

Developer Release 4 21 AAF Specification Version 1.0 DR4

 Source Clips in Physical Source Packages identify the PackageID of a previous physical source of
physical media. For example, a videotape Source Package has a Source Clip that specifies the Physical
Source Package describing the film that was used to generate the videotape.

 Source Clips in File Source Packages specify the PackageID of a Physical Source Package.. For
example, a video File Source Package has a Source Clip that specifies the Physical Source Package
describing a videotape used to generate the digital video data.

 Source Clips in Composition Packages specify the PackageID of the Material Package, and are used to
represent pieces of digital essence data. The Material Package provides a level of indirection between the
digital essence data and the objects that refer to them.

 A Composition Package is the result of the creative editing decision-making process. The original and
unmodified essence data is collection of digital essence data combined and modified as described by the
Composition Package.

 In summary, Packages describe not only essence data, but through their relationships between one
another, they describe how one form of essence data was derived from another.

 Figure 2-1 illustrates how a Source Clip in a Composition Package references a Material Package. The
Material Package references the File Source Package, which references the tape Package. Finally, the
tape Package references the film Package.

Developer Release 4 22 AAF Specification Version 1.0 DR4

ContentStorage

Master
Package

File Source
Package

Tape Source
Package

EssenceData EssenceData

SourceClip

SourceClip

SourceClip

Composition Package

TimelineSlot

TimelineSlot Sequence

Sequence

SourceClip
SourceClip

SourceClip

Film Source
Package

EssenceData EssenceData

Developer Release 4 23 AAF Specification Version 1.0 DR4

 Figure 2-1 Package references define the derivation of essence

 Static Image Essence in Packages

 Static image essence is described by a Static Slot. Static image essence has no relation to time;
consequently, Static Slots do not have an edit rate and the objects that they have do not specify a
duration.

 In a Static Slot, a Source Clip refers to another Static Slot by specifying its PackageID and SlotID but does
not specify an offset in time or a duration as in a Timeline Slot.

 Composition Packages that have only Static Slots specify the editing decisions involved in composing
static images. Figure 2-2 illustrates a typical Composition Package that describes a static image and the
static components used to compose it. The static images are combined by using static effects to
transform the individual images and to combine them into a single image.

OperationGroup

Static Image Order Effect

SourceClip

OperationGroup

Transform Effect

Group

Transform Effect
SourceClip

SourceClip

SourceClip

Composition
Package

Static Slot

InputMedia

 Figure 2-2 Composition Package with Static Essence

Developer Release 4 24 AAF Specification Version 1.0 DR4

 Time-varying Video and Audio Essence in Packages

 Audio and video essence data is represented in Timeline Slots. These are Slots that represent time-
varying data where this data has a fixed relationship with respect to time. For example, NTSC video has a
framerate of approximately 29.97 frames per second. Each Timeline Slot specifies an edit rate which
defines the unit of time for objects referred to by that particular Timeline Slot. Edit rates are specified as a
rational(a real number expressed as two integers: a denominator and a numerator). For example, NTSC
video's edit rate is typically specified by an edit rate of 30000/1001.

 In Timeline Slots, a source clip references a Timeline Slot in another Package by specifying its PackageID
and Timeline Slot ID number and by specifying a subsection of the Timeline Slot with an offset in time and
a duration. For example, a source clip in a composition Package can reference a subsection of audio or
video data by referencing a section of that essence data's Material Package.

 A simple Composition Package has audio and video Timeline Slots where each Timeline Slot has a
sequence of source clips. The sequence specifies that the source clips should be played consecutively,
one after another. Each Timeline Slot in the Composition Package is to be played simultaneously with
other co-timed Timeline Slots.

Developer Release 4 25 AAF Specification Version 1.0 DR4

SourceClip

SourceClip

SourceClip

SourceClip

Composition Package

Timeline Slot

Timeline Slot

Timeline Slot

Sequence

Sequence

Sequence

SourceClip

SourceClip

SourceClip

SourceClip

Picture

Sound

Sound

 Figure 2-3: Structure of Composition Package with Timeline Slots

Developer Release 4 26 AAF Specification Version 1.0 DR4

 Each source clip in a sequence identifies the audio or video data to be played and specifies its duration,
but does not specify the time at which it should be played in the composition. The starting time of a section
in a sequence depends on the number and duration of the sections that precede it. A source clip can be
thought of as a section of videotape or film to be spliced with other sections. By examining the section
itself, may listen to its audio or view its frames, but one can not tell where it will appear in the finished
piece until the preceding sections in the sequence are examined.

 Figure 2-4 illustrates how the source clips in a sequence appear in a timeline view of a composition.

SourceClip

+Length : Length = 80

SourceClip

+Length : Length = 100

Composition Package

Timeline Slot

Sequence

+Length : Length = 305

SourceClip

+Length : Length = 125

SourceClip

Length : Length = 100

SourceClip

Length : Length = 125

SourceClip

Length : Length = 80

Timeline View
 0 .. .

 Figure 2-4: Sequence in Composition Package

Developer Release 4 27 AAF Specification Version 1.0 DR4

 Event Data in Packages

 Events typically specify an action or define a behavior that takes place at a specified time. Typically, Event
Slots specify events that are associated with the time-varying essence in a parallel Timeline Slot. Each
Event Slot describes one kind of event. In each Event Slot, no two events should occur at the same time.
Figure 2-5 illustrates a Composition Package that has a Timeline Slot with video essence data, an Event
Slot that has comments defined for specific points in time, and an Event Slot that defines interactive areas
in the resultant image.

Developer Release 4 28 AAF Specification Version 1.0 DR4

IntraFrameMarker

CommentMarker

SourceClip

SourceClip

Composition Package

Timeline Slot

Event Slot

Event Slot

Sequence

Sequence

Sequence

SourceClip

SourceClip

IntraFrameMarker

CommentMarker

 Figure 2-5 Composition Package with Video Essence and Events

Developer Release 4 29 AAF Specification Version 1.0 DR4

Developer Release 4 31 AAF Specification Version 1.0 DR4

 3. Composition Packages
 This chapter describes the AAF Composition Package (Package), which is the AAF object that describes
editing information.

 Composition Package Basics
 Composition Packages (Packages) describe the creative editing and composing decisions that combine
the individual pieces of essence data into a unified program. A Composition Package can describe editing
decisions that vary in complexity from very simple compositions, which combine a few pieces of essence
in order, to very complex compositions that have complex, layered effects and thousands of individual
pieces of essence that are combined in various ways. Composition Packages are designed to be capable
of describing creative human decisions; consequently, their complexity is limited only by the limits of our
imagination.

 Composition Packages do not directly reference the essence data that they combine to form a program.
Composition Packages reference the basic essence data with Source Clips that identify the Material
Package and File Source Packages that describe the essence data. The Material Packages and File
Source Packages have the information that is used to read and write the essence data.

 In addition to Source Clips, Composition Packages can have Sequences, Effects, Transitions, and other
objects that combine or modify the basic essence data to produce the elements of essence data that go
into the final program. The essence data that results from these transformations can be stored in the file,
but typically is generated by the application from the basic essence data and is not stored until the
distribution media is generated from the Composition Package.

 Composition Packages consist of Slots that describe a set of editing decisions that can be referenced
from outside of the Package. Slots in a Composition Package typically describe sets of editing decisions
that are combined in some form to produce the final program.

 Slots can describe timeline essence data, such as audio and video, static essence data, such as static
images, and other kinds of data, such as text or events.

Developer Release 4 32 AAF Specification Version 1.0 DR4

 A Composition Package can have Slots that all describe timeline essence data, that all describe static
essence data, or that describe different kinds of essence data.

 A simple Composition Package could have two Timeline Slots describing audio data and one Timeline
Slot describing video data. The edited program produced by this Composition Package would consist of
three synchronized tracks: two audio and one video.

 Another simple Composition Package could have one Static Slot , describing a single static image
composed by combining a set of static images.

 A complex Composition Package could have Timeline Slots, Static Slots, and Event Slots. The edited
program produced by this Composition Package could have elements from each of these Slots combined
in some form by the objects in the Composition Package.

 Timeline Slots
 Timeline Slots typically have a Sequence of audio or video segments. Each segment can consist of a
simple Source Clip or a complex hierarchy of Effects. Figure 3-1 is a containment diagram of a
Composition Package that has only Timeline Slots with audio and video data.

Composition Package

Timeline Slot1..n

{ordered}

Sequence

1..n

{ordered}

Transition Segment

Component

OperationGroup Filler NestedScope ScopeReference Sequence SourceClipSelector

Developer Release 4 33 AAF Specification Version 1.0 DR4

 Figure 3-1: Containment Diagram for Composition Package with Timeline Slots

 Sequences

 A Sequence can have the following components:

• Source Clip: Specifies a section of essence or other time-varying data and identifies the Slot in
another Package or within the same Package that describes the essence.

• Filler: Specifies an unknown value for the Component’s duration. Typically, a Filler is used in a
Sequence to allow positioning of a Segment when not all of the preceding material has been
specified. Another typical use of Filler objects is to fill time in Slots and Nested Scope Segments
that are not referenced or played.

• Transition: Causes two adjacent Segments to overlap in time and to be combined by an effect.

• EffectDefinition property of an Effect: Specifies an effect to be used in a Composition Package;
specifies kind of effect, input essence segments, and control arguments.

• Sequence: A Sequence within a Sequence combines a set of Components into a single segment,
which is then treated as a unit in the outer Sequence.

• Nested Scope: Defines a scope of slots that can reference each other. The Nested Scope object
produces the values of the last slot within it. Typically, Nested Scopes are used to enable layering
or to allow a component to be shared.

• Scope Reference: Refers to a section in a Nested Scope slot.

• Selector: Specifies a selected Segment and preserves references to some alternative Segments
that were available during the editing session. The alternative Segments can be ignored while
playing a Composition Package because they do not effect the value of the Selector object and
cannot be referenced from outside of it. The alternative Segments can be presented to the user
when the Composition Package is being edited. Typically, a Selector object is used to present
alternative presentations of the same content, such as alternate camera angles of the same
scene.

 The Sequence object combines a series of timeline Components in sequential order. If the Sequence has
only Segments, each Segment is played sequentially after the Segment that precedes it. The time in the
Composition Package that a Segment starts is determined by the Components that precede it in the
Sequence.

 Transitions

 A Transition can occur in a Sequence between two Segments. The Transition causes the preceding and
following Segments to overlap in time. The Transition specifies an effect that is used to combine the
overlapping Segments. Figure 3-2 illustrates the Sequence containment showing Transition, which itself
has an Effect.

Developer Release 4 34 AAF Specification Version 1.0 DR4

Sequence

Segment

1..*

{ordered}

OperationGroup Filler NestedScope ScopeReference Sequence SourceClip

Component

Transition

OperationGroup

{Transitions occur between
two Segments}

Selector

 Figure 3-2: Containment Diagram of Sequence with Transition

 Figure 3-3 shows an instance diagram of a Sequence containing Source Clips and a Transition. It shows
the timeline view of the Sequence, in which the Transitions cause the two Source Clips to overlap

Developer Release 4 35 AAF Specification Version 1.0 DR4

th = 100

urceClip

SourceClip

+Length : Length = 80

SourceClip

+Length : Length = 100

Composition Package

Timeline Slot

Sequence

+Length : Length = 230

Transition

+Length : Length = 75

SourceClip

+Length : Length = 125

SourceClip

Length : Length = 100

SourceClip

Length : Length = 125

SourceClip

Length : Length = 80

Transition

Length : Length = 75

SourceClip

Length : Length = 80
SourceClip

Length : Lengt
Transition

Length : Length = 75

Timeline View
0 .. .

Developer Release 4 36 AAF Specification Version 1.0 DR4

 Figure 3-3: Transition Cause Segments to Overlap

 To calculate the duration of a Sequence with Transitions, you add the durations of the Segments and then
subtract the duration of the Transitions. In the example in Figure 3-3, the duration of the Sequence is 125
+ 100 + 80 — 75, which equals 230.

 If you are inserting a Transition between two Source Clips, and you want to preserve the overall duration
of the two Segments, you must adjust the Source Clip’s Length and StartTime values.

 Cuts and the Transition Cut Point

 Transitions also specify a CutPoint. The CutPoint has no direct effect on the results specified by a
Transition, but the CutPoint provides information that is useful if an application wishes to remove or
temporarily replace the transition. The CutPoint represents the time within the Transition that the
preceding Segment should end and the following one begins, if you remove the Transition and replace it
with a cut. To remove a Transition and preserve the absolute time positions of both Segments, your
application should trim the end of the preceding Segment by an amount equal to the Transition Length
minus the CutPoint offset, and trim the beginning of the succeeding Segment by an amount equal to the
CutPoint offset.

 Treating Transitions As Cuts

 If you cannot play a Transition’s effect, you should treat it as a cut. Treating it as a cut means that you
should play the two Segments surrounding the transition as if they had been trimmed, as described in the
preceding paragraphs. If you play the two Segments without trimming, the total elapsed time for them will
be greater than it should be, which can cause synchronization problems.

 Restriction on Overlapping Transitions

 Transitions can occur only between two Segments. In addition, the Segment that precedes the Transition
and the Segment that follows the Transition must each have a Length that is greater than or equal to the
Length of the Transition. If a Segment has a Transition before it and after it, the Segment’s Length must
be greater than or equal to the sum of the Length of each of the two Transitions. This ensures that
Transitions do not overlap. These restrictions allow applications to treat Transitions in a uniform manner
and to avoid ambiguous constructions.

 It is possible to create Sequences that appear to start or end with Transitions or that appear to have
overlapping Transitions. To create the appearance of a Transition at the beginning of a Sequence,
precede the Transition with a Filler object that has the same length as the Transition. To create the
appearance of a Transition at the end of a Sequence, follow the Transition with a Filler object that has the
same length as the Transition.

 To create the appearance of overlapping Transitions, you nest the Transitions by using a Sequence within
another Sequence. You can put two Segments separated by a Transition in the inner Sequence. Then you
can use this Sequence object as the Segment before or after another Transition. The Transitions will
appear to be overlapping.

Developer Release 4 37 AAF Specification Version 1.0 DR4

 Static Slots
 Static Slots describe Essence data that has no relationship to time. Consequently, Static Slots do not
specify an edit rate and Segments in Static Slots do not have a duration. Figure 3-4 is a containment
diagram for a Composition Package that has only Static Slots.

Composition Package

Static Slot1..n

{ordered}

Segment

OperationGroup NestedScope ScopeReference SourceClip Selector

 Figure 3-4: Containment Diagram for Composition Packages with Static Slots

 Combining Different Types of Slots
 A Composition Package can have Timeline Slots, Static Slots, and Event Slots. Although each kind of slot
can only have Segments with the corresponding relationship to time, it is possible for a Slot to have a
reference to another kind of Slot. For example, a video Timeline Slot can have a reference to an image in
a Static Slot.

Developer Release 4 38 AAF Specification Version 1.0 DR4

 A Slot can reference a different kind of Slot by containing a Source Clip referencing the other Slot or by
containing an Effect with a Source Clip referencing the other Slot. The Source Clip can reference Slots in
other Packages or can reference other Slots in the same Package.

 Conversion Operations

 The Source Clip provides the conversion operation in some simple cases:

• Taking an instantaneous value (such as a still frame) from a Timeline Component.

• Repeating a Static Segment to create a Timeline Segment.

 In these cases, the Data Kind of the two Segments must be the same. In all other cases, an explicit
operation is required. The Operation Definition must explicitly allow inputs of the appropriate temporal
nature and produce a result of the required temporal nature. Conversion operations are summarized in
Table 3-1.

 Table 3-1: Static, Timeline, and Event Conversions

 Convert to:

 Convert from:

 Static Event Timeline

 Static Source Clip plus
Operation

 Source Clip (Start Time ignored)

 Event Source Clip plus
Operation

 Source Clip plus Operation

 Timeline Source Clip
(Length ignored)

 Source Clip plus
Operation

 Operations
 This interchange standard includes a set of essence operation effects (such as transitions or chroma-key
effects), which can be used to modify or transform the essence to produce a Segment of essence.
Operations can act on and produce any kind of essence: timeline, static, or event. The essence that an
effect acts on is called its input essence. These effects use the same binary plug-in model used to support
codecs, essence handlers, or other digital processes to be used to process the essence to create the
desired impact. The binary plug-in model gives applications the flexibility to determine when a given effect
or codec has been referenced inside of the file and to determine if that effect or codec is available, and if
not, to find it and load it on demand.

 Many common effects act on timeline or static essence and produce the same kind of essence as they act
on. For example, a picture-in-picture effect can act on either timeline video or static image essence. It
combines two input essence Segments to produce a resulting Segment. A picture-in-picture effect with
timeline video input essence Segments produces a timeline video result. A picture-in-picture effect with
static image input essence Segments produces a static image result. There are also effects than convert
from one kind of essence to another.

Developer Release 4 39 AAF Specification Version 1.0 DR4

 A specific usage of an effect in an file is described by an OperationGroup object. The OperationGroup that
produces a segment is made up of the following:

• Has an ordered set of input essence Segments.

• Is associated with an OperationDefinition object.

• Has a set of effect control parameters.

• May optionally have a rendered version of the Operation.

 Effect Input Essence Segments

 Most common effects have either one or two input essence Segments. Some effects can have more than
two input essence Segments, and there are effects that have no input essence Segments.

 Filter Effects with One Input Essence Segment

 An effect that has one input essence Segment is often called a filter effect because it takes its input
essence Segment, modifies it by passing it through some kind of filter, and then produces a resulting
essence Segment. Some example picture filter effects are a blur effect or a color correction effect. An
example audio filter effect is a gain effect.

 If an application cannot generate a filter effect, it can usually substitute the input essence Segment for the
effect result and have a meaningful, if not completely accurate, output. You cannot substitute the input
essence for time-warp effects. Time-warp effects are timeline essence effects where the duration of the
input essence Segment is different from the duration of the effect result. Slow motion and freeze-frame
effects are examples of time-warp effects.

 Effects with Two Input Essence Segments

 Effects with two input essence Segments combine the Segments to produce a single resulting Segment.
For example, a picture-in-picture or a superimpose effect takes two images and combines them to
produce a single image.

 A transition effect is a timeline effect with two input essence Segments that are intended to change from
one input essence Segment to another. Examples of transition effects are wipes and audio crossfades.
For more information about effects in transitions, see the Transition Effects section in this chapter.

 Some effects can have any number (greater than zero) of Segments. These effects typically are used to
add together a number of essence Segments. For example, the audio mixdown effect takes any number
of audio Segments and adds them to produce a combined audio Segment. Another example is the image
ordering effect that takes a set of pictures (static or timeline) and combines them by placing one in front of
another in the order in which they are specified.

Developer Release 4 40 AAF Specification Version 1.0 DR4

 Effect Definitions

 Effects are identified by a AUID, a unique identifier. The file also contains an EffectDefinition object that
provides additional information about the effect. It identifies the effect it is defining with a AUID and
includes the following additional information:

• Effect name and description for display purposes

• Number of essence input segments

• Control code definitions that define the effect’s parameters

• Information to find plug-in code to process the effect

 For more information on defining effects, see the Defining Effect section.

 Effect Control Parameters

 Effect controls are contained in a set of Parameters. Each Parameter identifies the purpose of the
parameter by specifying a parameter AUID and specifies either a single constant or a varying value. The
Effect Definition lists the parameters that can be specified for the Effect.

 A constant value is specified by an ConstantValue object, which has a single value. For timeline effects,
this means the value is constant over time.

 For timeline effects, a varying value is specified by an VaryingValue object, which specifies a value that
varies over time. Note that it is possible to define parameters whose value varies over a domain other than
time. For example, a color-correction effect can have a parameter whose value varies depending on the
color space of a pixel in an image.

 An VaryingValue object specifies its values by containing an ordered set of Control Points. Each Control
Point specifies a value for a specific point in time. The Control Point identifies the point in time by
specifying a rational number where zero represents the time at the beginning of the effect and 1/1
represents the time at the end of the effect.

 A Varying Value specifies how to interpolate the effect between the time points whose value is specified by
a Control Point. A Varying Value can have linear, constant, B-Spline, logarithmic, or Bezier interpolation.

• Linear interpolation means that the parameter varies in a straight line between two values.

• Constant interpolation means that the parameter holds a constant value until the next Control
Point is reached.

• B-spline, logarithmic, and Bezier interpolations are mathematical formulas to create a curve
between two points.

 If two Control Points specify the same time, the second defines the value at that time. The first is used
only to interpolate for times before the specified time.

Developer Release 4 41 AAF Specification Version 1.0 DR4

 If the first Control Point has a time greater than zero, its value is extrapolated as a constant backward to
zero. If the last Control Point has a time less than 1/1, its value is extrapolated as a constant forward to
1/1.

 Rendered Effect Essence

 Sometimes it is desirable to compute the results of an Effect once and store them. When the Effect is
being played or accessed later, the results can be retrieved quickly and repeatedly without having to
perform complex calculations.

 A rendered version is digital essence data that can be played to produce the effect. The Effect identifies a
rendered effect by containing a Source Clip that identifies the Material Package and File Source Package
that describe the rendered essence. If there is more than one implementation of a rendering, the Material
Package could have a Essence Effect object.

 Effects in Transitions

 The Effect that is used in a Transition does not have any explicitly specified input essence Segments.
Instead, the Effect gets its input essence Segments from the Segment that precedes it and the Segment
that follows the Transition object in the Sequence.

 In most cases, effects used in Transitions are defined to have two input essence Segments and a special-
level parameter. When an effect is used in a Transition, the following specify its behavior:

• The outgoing essence is the first, or A, input essence Segment.

• The incoming essence is the second, or B, input essence Segment.

• If the level parameter is not explicitly specified, its default value is a Varying Value with two
Control Points: a value of zero at time zero, and a value of 1/1 at time 1/1.

 Note that when an effect is used in a transition, it should not have any explicit input essence Segments.
But an effect in a Transition can override the default values for the level parameter.

 Scope and References
 Scope Reference objects enable you to reference from within one slot the values produced by another
slot. A Scope Reference can reference a Segment in a Nested Scope, or it can reference a Segment in
another Slot. It can refer to a Segment in the same Nested Scope that it is defined in or in an outer Nested
Scope that has it.

 Although Scope References can be used to reference other Slots in the same Package, they should only
be used to reference Slots with the same data kind and the same relationship to time. If you need to
reference a Slot with another relationship with time, you should use a Source Clip than does not specify a
PackageID parameter.

Developer Release 4 42 AAF Specification Version 1.0 DR4

 Why Use Scope References

 Two reasons to use Scope References are:

• To layer sections of essence that overlap.

• To share the values produced by a slot in different contexts.

 Although you can layer overlapping sections of essence without using Scope References, you lose some
information that makes it harder for the user to make changes. For example, consider the following
sequence of shots that a user wants to appear in a production:

 1. A title superimposed on a long shot of a Mediterranean island.

 2. A shot of the star inserted in a picture-in-picture effect over the island shot.

 3. Ending with the island shot.

 You could get this sequence of shots without using Scope References by creating the following Sequence:

 1. Effect for title effect with the Source Clip for the island. shot

 2. Effect for picture-in-picture effect.

 3. Another Source Clip for the island shot.

 Within each of the Effects, you would specify one of the input segments to have a Source Clip of the
island shot. The problem with this way of implementing the Sequence is that there are three Source Clips
that refer to adjacent sections of the same scene with no linkage indicated in the file. If you change the
length of one of the Source Clips or Effects, you need to change the other Segments in the Sequence to
ensure continuity.

 Alternatively, you could specify this with Nested Scope and Scope Reference objects where the Nested
Scope would contain:

• One slot that has the full island shot.

• One slot that had a Sequence containing the two Effects and a Scope Reference to the other slot.
Each of the Effects specifies one of its input essence Segments with a Scope Reference to the
other slot.

 The length of any of the Segments in the second slot can be changed without losing the continuity of the
background island scene. The user can also easily replace the background island scene and retain the
edits in the second slot.

 Another reason to use Scope References is to share the values produced by one slot in different contexts.
An example of this is an effect that produces a rotating cube where each side of the cube shows the
Segment from a different Effect Slot. If you want some of the sides to show the same Segment, you can
use Scope References and put the desired Segment in another slot.

Developer Release 4 43 AAF Specification Version 1.0 DR4

 How to Specify Scope References

 The Package defines a scope consisting of the ordered set of Slots. A Scope Reference object in a Slot
can specify any Slot that precedes it within the ordered set. Nested Scope objects define scopes that are
limited to the Components contained within the Nested Scope object’s slots. A Scope Reference is
specified with a relative scope and a relative slot.

 Relative scope is specified as an unsigned integer. It specifies the number of Nested Scopes that you
must pass through to find the referenced scope. A value of zero specifies the current scope, which is the
innermost Nested Scope object that has the Scope Reference or the Package scope if no Nested Scope
object has it. A relative scope value of one specifies that you must pass through the Nested Scope object
containing the Scope Reference to find the Nested Scope or Package scope that has it.

 Relative slot is specified as a positive integer. It specifies the number of preceding slots that you must
pass to find the referenced slot within the specified relative scope. A value of one specifies the
immediately previous slot.

 A Scope Reference object returns the same time-varying values as the corresponding section of the slot
that it references. The corresponding section is the one that occupies the same time period as the Scope
Reference.

 If a Scope Reference specifies a Slot, the corresponding section of the slot is the time span that has the
equivalent starting position from the beginning of the Slot and the equivalent length as the Scope
Reference object has within its Slot. If the specified Slot has a different edit rate from the Slot containing
the Scope Reference, the starting position and duration are converted to the specified Slot’s edit units to
find the corresponding section.

 If a Scope Reference specifies a Nested Scope slot, the corresponding section of the slot is the one that
has the same starting position offset from the beginning of the Nested Scope segments and the same
duration as the Scope Reference object has in the specified scope.

 Other Composition Package Features
 This section describes how to perform the following in Composition Packages:

• Preserve editing choices

• Use audio fades

 Preserving Editing Choices with Selectors

 In some cases, an application may need to preserve alternatives that were presented to the user and not
chosen. For example, if a scene was shot with multiple cameras simultaneously, the user can choose the
video from the preferred camera angle. In a future editing session, the user may wish to change the video
to one that was shot from another camera. By preserving the original choices in the Composition
Package, your application can make it easier for the user to find the alternatives.

Developer Release 4 44 AAF Specification Version 1.0 DR4

 The Selector object specifies a selected Segment and a set of alternative Segments. When playing a
Composition Package, an application treats the Selector object as if it were the selected Segment.
However, when a user wants to edit the Composition Package, the application can present the alternative
Segments as well as the selected one.

 Using Audio Fade In and Fade Out

 The Source Clip FadeInLength, FadeInType, FadeOutLength, and FadeOutType properties allow you to
specify audio fades without an Effect object. Audio fades use these Source Clip properties instead of
Effect properties of the Effect for the following reasons:

• Some applications use audio fades on every Segment of audio to avoid noise when cutting from
one audio Segment to another. Using the Source Clip properties rather than Effect properties
simplifies the Composition Package structure.

• Audio fades typically have simple controls arguments and do not need the time-varying control
arguments that are allowed in Effects.

However, if you want to create a crossfade, you need to do one of the following:

• Insert a Transition object with the MonoAudioMixdown effect between the two audio source clips
to cause them to overlap. If the FadeOutLength of the preceding Source Clip is not equal to the
FadeInLength of the following Source Clip, the crossfade will be asymmetric.

 Specify the overlapping audio Source Clips as different input essence Segments in a MonoAudioMixdown
of an Effect.

Developer Release 4 45 AAF Specification Version 1.0 DR4

Developer Release 4 47 AAF Specification Version 1.0 DR4

 4. Describing and Storing Essence
 This chapter shows how AAF files describe essence.

 Overview of Essence
 AAF files can describe and contain a broad range of essence types and formats. These essence types
include the following:

• Video essence in various formats (RGBA, YCbCr, MPEG)

• Sampled audio essence in various formats (AIFC, Broadcast WAVE)

• Static image essence

• MIDI music essence

• Text essence in various formats

• Compound essence formats (DV, MPEG transport streams, ASF)

 In addition to the essence formats described in this document, this interchange standard provides a
general mechanism for describing essence formats and defines a plug-in mechanism that allows
applications to import and export new types of essence data.

 This standard defines the metadata in structures that are independent of the storage details of the
essence format. This independence enables Composition Packages to reference essence data
independently of its format. A Composition Package describes editing decisions in a manner that is
independent of the following:

• Byte order of the essence (AIFC and WAVE)

• Whether the essence data is contained within the file or is in another container file

• Whether the digital essence data is accessible

• Format or compression used to store the digital essence data

Developer Release 4 48 AAF Specification Version 1.0 DR4

 This interchange standard makes it easier for applications to handle different formats by providing a layer
that is common to all.

 Essence source information describes the format of audio and video digital data, how the digital data was
derived from tape or film, and the format of the tape and film. Source information can also include tape
timecode, film edgecode data, and pulldown information.

 This interchange standard uses the following mechanisms to describe essence:

• Material Packages provide a level of indirection between Composition Packages and File
Source Packages and can synchronize File Source Packages.

• Source Packages describe digital essence data stored in files or a physical media source
such as videotape, audio tape, and film. The Source Package has the following objects
that provide information about the essence:

• Slots specify the number of tracks in the essence source, the duration of each
track, the edit rate, and the Source Package that describes the previous
generation of essence. In addition, Slots can have timecode and edge code
information.

• Essence Descriptors describe the kind of essence and the format of the essence
and specify whether the Source Packages describe digital essence data stored in
files or a physical media source.

• Pulldown objects describe how essence is converted between a film speed and a
video speed.

• Essence data objects contain the digital essence data and provide supplementary
information such as frame indexes for compressed digital essence data.

 This chapter contains the following sections:

• Describing Essence with Material Packages

• Describing Essence with Source Packages

• Describing Timecode

• Describing Essence with Pulldown

 Describing Essence with Material Packages
 A Material Package provides a level of indirection for accessing Source Packages from Composition
Packages. The essence associated with a Source Package is immutable. Consequently, if you must make
any changes to the essence data, you must create a new Source Package with a new unique PackageID.
Typical reasons to change the essence data include redigitizing to extend the section of the essence
included in the file, redigitizing to change the compression used to create the digital essence data, and
redigitizing to change the format used to store the essence data, such as from AIFF audio data to WAVE
audio data. A Composition Package may have many Source Clip objects that reference essence data
updating every Source Clip in the Composition Package each time the essence is redigitized would be
inefficient. By having the Composition Package access a Source Package only through a Material
Package, this interchange standard ensures that you have to change only a single Material Package when
you make changes to the essence data.

Developer Release 4 49 AAF Specification Version 1.0 DR4

 In addition, a Material Package can synchronize essence data in different Source Packages. For example,
when an application digitizes a videotape, it creates separate Source Packages for the video and audio
data. By having a single Material Package with one Slot for each Source Package, the Composition
Package avoids having to synchronize the audio and video tracks each time it references essence from
different tracks of the videotape.

 The same essence data can exist in more than one digital essence data implementation. Different
implementations represent the same original essence data but can differ in essence format, compression,
or byte order. If there are multiple implementations of digitized essence, the Material Package can have a
Essence Group object. The Essence Group object has a set of Source Clip objects, each of which
identifies a Source Package associated with a different implementation of the essence data. An
application can examine these implementations to find the one that it is able to play or that it can play most
efficiently. Essence Groups may be needed if you have systems with different architectures or
compression hardware accessing a single interchange file.

 If, when a essence data file is redigitized, it has to be broken into multiple files, this can be represented by
a Sequence object in the Material Package that has a series of Source Clip objects, each identifying the
Source Package associated with one of the files.

 Typically, Material Packages have a very simple structure. They have an externally visible Slot for each
track of essence and do not have any other slots. Typically, each Slot has a single Source Clip object that
identifies the Source Package. Material Packages cannot have Operation Groups, Nested Scopes,
Selectors, Edit Rate Converters, or Transitions.

 The following lists the reasons for having a Slot in a Material Package have an object other than a Source
Clip:

• If there are multiple implementations of the same essence, the Slot can have a Essence
Group instead of a Source Clip object.

• If the essence source has been broken into several Source Packages, the Slot can have
a Sequence object. The Sequence object cannot have any component other than a
Source Clip object or a Essence Group object.

• If one of a limited set of correction effects is applied to the essence data

 Figure 4-1 illustrates the containment diagram for a Material Package describing timeline essence data,
such as audio or video.

Developer Release 4 50 AAF Specification Version 1.0 DR4

Material Package

Timeline Slot1..*

Segment

SourceClip EssenceGroup SequenceOperationGroup

1..* SourceReference Segment1..*

 Figure 4-1: Material Package Containment Diagram

 Describing Essence with Source Packages
 A Source Package represents a file containing digitized essence or a physical media source, such as an
audio tape, film, or videotape.

 If the essence described by the Source Package has been derived from a previous generation of essence,
the Slots should have Source Clips that identify the Package that describes the previous generation. If the
Source Package describes essence that is not derived from a previous generation, the Slots should have
Source Clips that specify the null Package.

 Sample Rate and Edit Rate in Timeline Essence

 In many cases the sample rate and edit rate in a file Source Package will be the same. However, it is
possible to use different edit rates and sample rates in a Source Package. For example, you can create a
Source Package for digital audio data, where the edit rate matches the edit rate of the associated video
but the sample rate is much higher. The sample rate is specified in the SampleRate property in the File
Descriptor . When accessing the digital essence data, your application must convert from the edit rate to
the sample rate.

Developer Release 4 51 AAF Specification Version 1.0 DR4

 The Source Origin in Timeline Essence

 When an application accesses the digital essence data, it locates the starting position by measuring from
a position known as the source origin. Each file Source Package indicates this position for each Timeline
Slot in order to provide a reference point for measurements of its essence data.

 For example, when you first digitize the audio from a tape, your application would most likely assign a
value of 0 to the Origin property. In this case the source origin corresponds to the beginning of the data.
Any Source Clip that references this audio will specify a StartTime value that is relative to the start of the
essence.

 However, the location of the origin does not necessarily correspond to the actual beginning of the source.
For example, if a user redigitizes the audio data in the previous example to add more data at the
beginning, the new Essence data object starts at a different point. However, the application will ensure
that existing Source Clips in Composition Packages remain valid by changing the value of the Origin
property in the Material Package. By setting the Origin to the current offset of the original starting point, the
application ensures that existing Composition Packages remain valid.

 Converting Edit Units to Sample Units

 A Timeline Slot uses its own edit rate. So, a Source Clip in a Composition Package indicates the starting
position in the source and the length of the Segment in edit units. When an application plays a
Composition Package, it maps the Composition Package's references to the source material into
references to the corresponding digital essence data.

 To play the digital essence data referenced by a Composition Package, the application uses the StartTime
and Length values of the Composition Package's Source Clip, which are specified in edit units, along with
the edit rate to determine the samples to be taken from the essence data. The application converts EUs to
sample durations, adds the file Slot's Origin to the Source Clip's StartTime, then converts the resulting
sample time offset to a sample byte offset. Performing the final calculation for some essence data formats
involves examining the data to find the size in bytes of the particular samples involved. (All samples need
not be the same size.) For example, the JPEG Image Data object has a frame index.

 An application would not need to reference the original physical Source Package of the digitized data
unless it is necessary to redigitize or generate a source-relative description, such as an EDL or cut list.

 In summary:

• Composition Packages deal entirely in edit units, which are application-defined time units.

• Digital essence data such as video frames, animation frames, and audio samples are
stored in a stream of bytes, measured in sample units that represent the time duration of
a single sample.

• Applications access essence data by converting edit units to sample units and then to
byte offsets.

• Material Packages maintain a reference point in the digitized essence data called the
source origin. Composition Packages reference positions in the essence data relative to
the origin.

Developer Release 4 52 AAF Specification Version 1.0 DR4

 Describing Essence Format with Essence Descriptors
 Source Packages describe the details of the essence format with a Essence Descriptor object. Essence
Descriptor is an abstract class that describes the format of the essence data. The essence data can be
digitized essence data stored in a file or it can be essence data on audio tape, film, videotape, or some
other form of essence storage.

 There are two kinds of Essence Descriptors:

• File Descriptors that describe digital essence data stored in Essence data objects or in
noncontainer data files. The Essence File Descriptor class is also an abstract class; its
subclasses describe the various formats of digitized essence. If a Essence Descriptor
object belongs to a subclass of File Descriptor, it describes digital essence data. If a
Essence Descriptor object does not belong to a subclass of File Descriptor, it describes a
physical media source.

• Essence Descriptors that describe a physical media source. This specification defines the
Film Descriptor and Tape Descriptor, but additional private or registered subclasses of
Essence Descriptors can be defined.

 If the digital essence data is stored in an AAF file, the ContainerDefinition property in the File Descriptor
shall reference the ContainerDefinition for the AAF file format.. Digital essence data can be stored in a
noncontainer data file to allow an application that does not support this interchange standard to access it
or to avoid duplicating already existing digital essence data. However, since there is no PackageID stored
with raw essence data, it is difficult to identify a raw essence data file if the Locator information is no
longer valid. The format of the digital essence data in the raw file is the same as it would be if it were
stored in an Essence data object.

 The File Descriptor specifies the sample rate and length of the essence data. The sample rate of the data
can be different from the edit rate of the Source Clip object that references it.

 Figure 4-2 illustrates the containment diagram for File Source Packages and Figure 4-3 illustrates the
containment diagram for Physical Source Packages.

Developer Release 4 53 AAF Specification Version 1.0 DR4

Source Package

Timeline Slot1..*

Segment

SourceClip Pulldown

Segment

FileDescriptor

AIFCDescriptor DigitalImageDescriptor TIFFDescriptor WAVEDescriptor

CDCIDescriptor RGBADescriptor

TimecodeSourceClip

 Figure 4-2: File Source Package Containment Diagram

Developer Release 4 54 AAF Specification Version 1.0 DR4

Source Package

Timeline Slot1..*

Segment

SourceClip Pulldown

Segment

EssenceDescriptor

FilmDescriptor TapeDescriptor

TimecodeSourceClip

Timecode

Edgecode

Edgecode

 Figure 4-3: Physical Source Package Containment Diagram

 Describing Image Essence

 The goal of the image format is to simplify the representation of image data and to be able to store the
information required by video formats in common use. It can support compressed and uncompressed
video and can store images in either a color difference component or RGBA component image format. It
provides a rich description of the sampling process used to create the digital essence from an analog
source. This information allows applications to interpret the digital data to represent the original essence.

 This section explains the image essence descriptions that are common to all image essence descriptors
that are subclasses of the Digital Image Descriptor class.

Developer Release 4 55 AAF Specification Version 1.0 DR4

 In order to correctly process or regenerate images, you need access to a complete description of the
layout of the images in the file. This description allows applications to extract the relevant information from
the files, or, if the images have been lost, restore images to their original digital form. At the most generic
level, the description of the images is conveyed by a combination of the following properties: dimensional
properties (geometries), sampling properties and colorspace properties.

 These properties specify the following about the image format:

• Properties describing interleaving

• Properties describing geometry

• Properties describing sampling

• Properties describing alpha transparency

• Properties describing compression

 Properties Describing Interleaving

 The major structure of the images is determined by how the images are collated. Images can be
compound or atomic. Atomic images contain the entire frame in one contiguous segment. Examples of
atomic images include computer graphic frames, digitized film frames, progressive-scan video, two-field
interlaced video (even and odd fields mixed together), and single-field video (video where one of the fields
is discarded). Compound images are, at this time, limited to two-field non-interlaced video, in which the
fields are stored separately.

 Since compound video images represent two sub-images, each with the same characteristics, the
properties describe the individual fields, and will apply equally to both fields. This is important for
applications to recognize, since compound video images have a listed height that is half of the entire
frame.

 Some image formats allow some form of selection between interleaved and blocked component order.
Interleaved ordering has the data organized by pixels, with each pixel containing all of the components it
comprises.

 Properties Describing Geometry

 The geometry properties describe the dimensions and meaning of the stored pixels in the image. The
geometry describes the pixels of an uncompressed image. Consequently, the geometry properties are
independent of the compression and subsampling.

 Three separate geometries, stored view, sampled view, and display view, are used to define a set of
different views on uncompressed digital data. All views are constrained to rectangular regions, which
means that storage and sampling have to be rectangular.

 The stored view is the entire data region corresponding to a single uncompressed frame or field of the
image, and is defined by its horizontal and vertical dimension properties. The stored view may include
data that is not derived from and would not usually be translated back to analog data.

Developer Release 4 56 AAF Specification Version 1.0 DR4

 The sampled view is defined to be the rectangular dimensions in pixels corresponding to the digital data
derived from an analog or digital source. These pixels reside within the rectangle defined by the stored
view. This would include the image and auxiliary information included in the analog or digital source. For
the capture of video signals, the mapping of these views to the original signal is determined by the
VideoLineMap property.

 The display view is the rectangular size in pixels corresponding to the viewable area. These pixels contain
image data suitable for scaling, display, warping, and other image processing. The display view offsets are
relative to the stored view, not to the sampled view.

 Although typically the display view is a subset of the sampled view, it is possible that the viewable area
may not be a subset of the sampled data. It may overlap or even encapsulate the sampled data. For
example, a subset of the input image might be centered in a computer-generated blue screen for use in a
chroma key effect. In this case the viewable pixels on disk would contain more than the sampled image.

 Each of these data views has a width and height value. Both the sampled view and the display view also
have offsets relative to the top left corner of the stored view.

 Properties Describing Sampling

 The sampling properties describe the parameters used during the analog-to-digital digitization process.
The properties detail the mapping between the signals as well as the format of the source analog signal. If
the essence originated in a digital format, these properties do not apply.

 The VideoLineMap property is necessary for images that are derived from or will be converted to video
(television) signals. For each field, it describes the mapping, relative to the Sampled View in the digital
essence, of the digital image lines to the analog signal lines.

 The VideoLineMap specifies the relationship between the scan lines in the analog signal and the
beginning of the digitized fields. The analog lines are expressed in scan line numbers that are appropriate
for the signal format. For example, a typical PAL two-field mapping might be {20,332}, where scan line 20
corresponds to the first line of field 1, and scan line 332 corresponds to the first line of field 2. Notice that
the numbers are based on the whole frame, not on offset from the top of each field, which would be
{20,20}.

 A value of 0 is allowed only when computer-generated essence has to be treated differently. If the digital
essence was computer generated (RGB), the values can be either {0,1} (even field first) or {1,0} (odd field
first).

 Properties Describing Alpha Transparency

 The AlphaTransparency property determines whether the maximum alpha value or the 0 value indicates
that the pixel is transparent. If the property has a value of 1, then the maximum alpha value is transparent
and a 0 alpha value is opaque. If the property has a value of 0, then the maximum alpha value is opaque
and the 0 alpha value is transparent.

Developer Release 4 57 AAF Specification Version 1.0 DR4

 Properties Describing Compression

 The Compression property specifies that the image is compressed and the kind of compression used.
Applications are required to support JPEG and no compression. A value of JPEG specifies that the image
is compressed according to the following:

• Each image frame conforms to ISO DIS 10918-1. If the frame has two fields then each
field is stored as a separate image.

• Images may be preceded or followed by fill bytes.

• Quantization tables are required; they may not be omitted.

• Huffman tables are optional; if omitted, tables from the ISO standard are used.

 JPEG image data are color difference component images that have been compressed using the JPEG
compression algorithm. The JPEG descriptor specifies a general set of quantization tables for restoring
images from the original essence. While tables may vary per image, these tables will represent a starting
point.

 The JPEG Image Data object has a frame index that allows you to access the frames without searching
through the file sequentially. Since the size of the compressed frame is different depending on the image
stored on the frame, the frame index is needed to directly access data for a frame.

 Other values of the compression parameter will be defined for other schemes such as MPEG-2 Video,
and these other schemes will have their own parametric metadata and frame tables, etc.

 RGBA Component Image Descriptors

 An RGBA Component Image object describes essence data that consists of component-based images
where each pixel is made up of a red, a green, and a blue value. Each pixel can be described directly with
a component value or by an index into a pixel palette.

 Properties in the RGBA descriptor allow you to specify the order that the color components are stored in
the image, the number of bits needed to store a pixel, and the bits allocated to each component.

 If a color palette is used, the descriptor allows you to specify the color palette and the structure used to
store each color in the palette.

 Color Difference Component Image Descriptors

 Color Difference Component Image objects specify pixels with one luminance component and two color-
difference components. This format is commonly known as YCbCr.

 It is common to reduce the color information in luma/chroma images to gain a reasonable data reduction
while preserving high quality. This is done through chrominance subsampling. Subsampling removes the
color information from a fraction of the pixels, leaving the luminance information unmodified. This removal
has the effect of cutting the sampling rate of the chrominance to a fraction of the luminance sampling rate.

Developer Release 4 58 AAF Specification Version 1.0 DR4

The fraction is controlled by the subsampling specification property. The subsampling factor specifies the
number of pixels that will be combined down to one for chrominance components.

 Since the color information is reduced across space, it is useful to be able to specify where in the space
the stored pixel is sited. Understanding the siting is important because misinterpretation will cause colors
to be misaligned.

 For uncompressed images, subsampling is limited to horizontal, since the pixels are interleaved.

 Describing TIFF Image Essence

 A TIFF Image Descriptor object describes the TIFF image data associated with the Source Package. The
image data is formatted according to the TIFF specification, Revision 6.0, available from Adobe
Corporation. The TIFF object type supports only the subset of the full TIFF 6.0 specification defined as
baseline TIFF in that document.

 Note The TIFF image format has been superseded by the Color Difference Component Image
Descriptor format and the RGBA Component Image Descriptor format in the current version of the
specification. The TIFF format is included in this specification for compatibility.

 The JPEGTableID is an assigned type for preset JPEG tables. The table data must also appear in the
TIFF object along with the sample data, but cooperating applications can save time by storing a
preapproved code in this property that presents a known set of JPEG tables.

 Describing Audio Essence

 An AIFC object contains digitized audio data in the big-endian byte ordering. It contains data formatted
according to the Audio Interchange File Format (AIFF), Apple Computer, Inc., Version 1. The audio data
and the AIFC descriptor data are contained in the AIFC object.

 Note that, although the AIFC standard is designed to support compressed audio data, the AIFC essence
format defined by this standard does not include any compressed audio formats. The only AIFC
compression form supported is NONE and the only AIFC data items that are necessary are the COMM
and SSND data items. All other AIFC data items can be ignored. The descriptive information is contained
directly in the AIFC object. The AIFC SSND data is duplicated in the AIFC Audio Descriptor to make it
more efficient to access this information.

 A WAVE object contains digitized audio data in the little-endian byte ordering. It contains data formatted
according to the Microsoft/IBM Multimedia Programming Interface and Data Specifications, Version 1.0,
but limited to the section describing the RIFF Waveform Audio File Format audio data. The WAVE file
information (without the sample data) is duplicated in the WAVE Audio Descriptor to make it more efficient
to access this information.

 The descriptive information is contained directly in the WAVE object. No additional data properties or
objects are defined for WAVE data, because this format includes all of the metadata needed for playback.

Developer Release 4 59 AAF Specification Version 1.0 DR4

 If a Material Package or Source Package has two stereo audio essence tracks, the
PhysicalChannelNumber indicates the physical input channel according to the following convention: 1
indicates the left channel and 2 indicates the right channel.

 Describing Tape and Film

 The Tape Descriptor describes videotape and audio tape media sources. The Film Descriptor describes
film sources. Their properties describe the physical storage format used for the essence. When you create
a tape or film Source Package, you can include as many of these properties as your application has
access to. Since these properties are optional, they can be omitted when they are unknown.

 Describing Timecode

 Timecode typically is described in a Source Package or in a Composition Package. Timecode can be
described by specifying a starting timecode value or by including a stream of timecode data.

 A Timecode object in a Source Package typically appears in a Slot in a Source Package that describes a
videotape or audio tape. In this context it describes the timecode that exists on the tape.

 If a tape has a contiguous timecode, the Source Package can have:

• A Slot for each track of essence on the tape; the Slot should have a single Source Clip
whose Length equals the duration of the tape.

• A Slot for the timecode track that has a Start value equal to the timecode at the beginning
of the tape and whose Length equals the duration of the tape.

 If a tape contains noncontiguous timecodes, then the Slot can have a Sequence of Timecode objects;
each representing a contiguous section of timecode on the tape or can specify the timecode stream data.

 In some cases the information required to accurately describe the tape's timecode may not be available.
For example, if only a section of a videotape is digitized, the application may not have access to the
timecode at the start of the videotape. In these cases, applications may create a Source Package in which
the duration of the Source Clip does not necessarily match the duration of the videotape.

 The timecode information for digital essence data and file Source Packages is contained in the videotape
Source Package that describes the videotape used to generate the digital essence data.

 The starting timecode for digital essence data is specified by the Source Clip in the File Source Package
and by the timecode track in the videotape Source Package. The Source Clip specifies the PackageID of
the videotape Source Package, the SlotID for the Slot describing the essence data, and the offset in that
track. To find the timecode value, you must find the value specified for that offset in the timecode Slot of
the videotape Source Package.

 If a videotape has continuous timecode for the entire tape, it is specified by a single Timecode object. If a
videotape has discontinuous timecode, interchange files typically describe it with a single Timecode object
that encompasses all timecode values that are used on the videotape. Discontinuous timecode can also
be described by the following

Developer Release 4 60 AAF Specification Version 1.0 DR4

• A timecode track that has a sequence of Timecode objects, each of which specifies the
starting timecode and the duration of each section of continuous timecode on the
videotape

• A timecode stream that duplicates the timecode data stored on the videotape

 If the timecode track has a single Timecode object, you add the offset to the starting timecode value
specified by the Timecode object.

 If the timecode track has a sequence of Timecode objects, you calculate the timecode by finding the
Timecode object that covers the specified offset in the track and add to its starting timecode the difference
between the specified offset and the starting position of the Timecode object in the track.

 If a Source Package has more than one timecode Slot, the PhysicalChannelNumber property indicates the
purpose of each as described in Table 4-1.

 Physical Channel Usage
 1 default TC

 2 Sound TC

 3 Aux. TC

 4 AuxTC2

 5 Aux TC3

 6 Aux TC4

 7 Aux TC5

 Table 4-1: Physical Channel Number and Timecode Usage

 Describing Edgecode

 Film edgecode is described in Film Packages. Edgecode is specified with a Timeline Slot containing an
Edgecode object. The Edgecode object specifies the starting edgecode value, the type of film, and the text
egdecode header. If there is more than one edgecode Slot, the purpose of each is described by the
PhysicalChanneNumber property as described in Table 4-2.

 Physical Channel Usage
 1 Keycode #

 2 Ink Number

 3 Aux. Ink #

 Table 4-2: Physical Channel Number and Timecode Usage

Developer Release 4 61 AAF Specification Version 1.0 DR4

 Describing Essence with Pulldown Objects

 Pulldown is a process to convert essence with one frame rate to essence with another frame rate. This
interchange standard describes how essence has been converted with Pulldown objects in File Source
Packages and videotape Source Packages.

 What is Pulldown?

 Pulldown is a process to convert between essence at film speed of 24 frames per second (fps) and
essence at a videotape speed of either 29.97 fps or 25 fps. It is important to track this conversion
accurately for two reasons:

• If the final essence format is film and the edits are being done in video, you must be able
to accurately identify a film frame or the cut may be done at the wrong frame in the film.

• You need to be able to maintain the synchronization between picture and audio.

 There are two processes that are used to generate a videotape that matches the pictures on film:

• Telecine after the film has been processed a videotape is generated from the film
negative or workprint.

• Video tap during filming a video camera taps the images being filmed and records a
videotape as the film camera shoots the take. The video camera gets the same image as
the film camera tapping the image by means of either a half-silvered mirror or a parallel
lens.

 The videotape can then be digitized to produce a digital video data that can be edited on a nonlinear
editing system.

 It is also possible to digitize a film image without creating a videotape. The film image can be digitized at
film resolution, video resolution, or both.

 The audio tracks also are transferred from the original recording essence to digital audio data stored on a
nonlinear editing system. The audio tracks can be transferred by the same mechanism as the video tracks
or by a different mechanism.

 Nonlinear editing of material that originated on film can use any of the following workflows:

• Offline film project film to tape to digital to film cut list

• Offline video project film to tape to digital with matchback to videotape EDL and/or film cut
list

• Online video project film to tape to digital, recording a final cut from digital to tape

 Each of these workflows has a different requirement for synchronizing the digital, tape, and film media for
both audio and video.

Developer Release 4 62 AAF Specification Version 1.0 DR4

 NTSC Three-Two Pulldown

 The relation between film speed (24 fps) and NTSC (29.97) is approximately 4 to 5. A videotape will have
five frames for each four frames of film. Three-Two pulldown accomplishes this by creating three fields
from half of the frames and two fields from the other frames. The A and C frames are transferred into two
fields and the B and D frames are transferred into three fields.

 Since NTSC videotape has a speed of 29.97 fps, in order to get an exact ratio of 4 to 5, the film is played
at 23.976 fps in the telecine machine instead of its natural speed of 24 fps.

 Figure 4-4 illustrates how four film frames are converted to five video frames in Three-Two pulldown by
converting film frames to either two or three video fields.

 Figure 4-4: Telecine Three-Two Pulldown

 During the telecine process, a white flag can be added to the vertical blanking interval of the first field of
video that corresponds to a new film frame.

 A tape Package describing a tape produced by telecine should have edit rates of 30 fps for its tracks.
Although the videotape is always played at 29.97 fps, the content has a speed of 30 fps.

 If the final distribution format is being generating from film, there are advantages to digitizing the videotape
to digital video essence that has a film sample rate. This is done by a reverse telecine process where only
4 digital fields are created from 5 video frames, which contain 10 video fields.

Developer Release 4 63 AAF Specification Version 1.0 DR4

 Other Forms of Pulldown

 If an NTSC videotape is generated by a video camera running in synchronization with the film camera, the
film camera runs at 24 fps and the video runs at 29.97 fps. Four film frames do not correspond to exactly
five video frames; they correspond to slightly more than five video frames. The video tap uses a white flag
in the vertical blanking area to indicate when a new film frame starts. The first field that starts after the film
frame starts is indicated by a white flag.

 PAL video and 24 fps film can be converted by simply speeding up the film to PAL's 25 fps rate or can be
converted by a pulldown process by converting all 24 frames except the twelfth and twenty-fourth into two
fields of video and converting the twelfth and twenty-fourth film frames into three fields of video.

 Pulldown Objects in Source Packages

 If NTSC video is digitized to a 24-fps film rate using a reverse Three-Two pulldown, both the File Source
Package and the Videotape Source Package have Pulldown objects.

 The Pulldown object in the File Source Package describes how the videotape was digitized. The track in
the File Source Package has an edit rate of 24/1 but the Source Clip in the Pulldown object has an edit
rate of 30/1. The Pulldown object specifies the phase of the first frame of the digital essence data. The
phase has a value in the range 0 to 3, where 0 specifies the A frame and 3 specifies the D frame.

 The Pulldown object in the videotape Source Package describes how the video was generated from film.
The track in the videotape Source Package has an edit rate of 30/1 but the Source Clip in the Pulldown
object has an edit rate of 24/1. The phase specifies where the first frame of the section of videotape is in
the 5-frame repeating pattern. The phase has a value in the range 0 to 4, where 0 specifies that the first
frame is the AA frame.

 You need to use the phase information to convert an offset in the Package track containing the Pulldown
object to an offset in the previous generation Package. To convert a film-rate offset, you multiply it by 5/4
to get a video rate offset, but if the result is not an integer, you use the phase information to determine
whether you round up or down to get an integer value.

 Typically a videotape is generated from more than one piece of film. In this case, the picture track in the
videotape Source Package has a Sequence object which has a Pulldown object for each section of film
that has been telecined. If the videotape has discontinuous timecode and the videotape Source Package
timecode track has a single Timecode object, then the Pulldown objects in the Sequence are separated by
Filler objects that correspond to the skipped timecodes on the videotape.

Developer Release 4 65 AAF Specification Version 1.0 DR4

 5. Extending AAF
 Overview of Extending AAF
 The Advanced Authoring Format is designed to allow extensions. AAF files can include extensions that
define new effects, new kinds of metadata, and new kinds of essence data.

 As the technologies of authoring applications advance, people can use the applications to do new things
and will want to interchange this new kind of information between applications. Typically, these new
features are added by one or a few applications, and gradually, as the technology matures, the features
become common to many applications. Consequently, these features are first defined as private
extensions to this standard and may later progress to be included in the dynamic document that describes
this standard.

 Applications may want to store information in extensions for the following reasons:

• To store optional information which can be displayed to the user by other applications. For
example an application can store user-specified comments about essence or compositions.

• To store information for targeted exchange. Two or more applications can be coded to understand
private or registered information.

• To store internal application-specific information so that the application can use this interchange
format as a native file format.

• To define new essence formats for use by plug-in codecs.

 The extra information stored by an application can vary in scale from a single private property to a
complex structure of private objects.

 Extensions may define the following:

• New effects

• New classes

Developer Release 4 66 AAF Specification Version 1.0 DR4

• New properties

• New property types

• New essence types

• Plug-in code

 New effects and new essence types may require special code to process the effect or essence. This code
can be supplied in a plug-in module. The plug-in mechanism is not defined as part of this standard. This
standard defines the properties required to specify a locator to find a plug-in.

 Extensions are specified in the Header Dictionary property.

 Defining New Effects
 The EffectsDefinition class defines new effects. Effect definitions include the following:

• AUID that identifies the effect

• Effect name and description for display purposes

• Plugin locators

• Number of essence input segments, specifies -1 for effects that can have any number of
input essence segments

• Control code definitions that define the effect's parameters:

• AUID identifying control code

• Data kind of parameter

• Range of allowed values

• Text associated with enumerated values

 When appropriate new Effect Definitions should use existing control codes and data kinds. If an Effect
Definition specifies a previously defined control code, it must specify the same data kind.

 If the data kind definition specifies a range of allowed values, an Effect Definition can limit the range of
allowed values to a lesser range but cannot extend the range.

 Defining New Classes
 To define a new class, you need to generate a AUID for the class and then have your application create
an ClassDefinition object in any interchange file that has the new class. The ClassDefinition object
specifies the following:

• AUID that identifies the class

• Superclass of the class

• Class name for display purposes

Developer Release 4 67 AAF Specification Version 1.0 DR4

• Properties that can be included in objects belonging to the class

 Defining New Properties
 You define new properties as part of a Class Definition. If you are defining a new class, you must specify
all the properties that can be used for the class. If you are adding optional properties to a class defined by
this document, you need only to specify the new properties in the class definition. You can omit the
properties defined in this document from the class definition.

 In a class definition, each property definition specifies the following:

• AUID that identifies the property

• Property name for display purposes

• AUID that identifies the property type

• Optionally, range of allowed values or text associated with enumerated values

 If the property has a new property type, the property type definition shall be included in the definition
objects defined in the Header object. If the property has a property type defined in this document, you can
omit the property type definition.

 Defining New Essence Types
 The scope of the task of defining new essence types varies greatly depending on how different the new
essence type is from the existing ones. Defining a new essence type can consist of any of the following

• Defining a new compression method for an existing data kind, such as video

• Defining a new essence type that requires a new data kind for segments

• Defining a new essence type that requires a new kind of Slot and a new set of classes for
Composition Packages

 This section contains a brief description of how to define a new essence type that uses an existing data
kind. Describing the requirements of defining a new data kind, a new kind of Slot, or new classes for
Composition Packages is beyond the scope of this document.

 To define a new essence type, you must:

• Define a new subclass of FileDescriptor or a new subclass of EssenceDescriptor for
Source Packages that are not File Source Packages

• Define a new subclass of EssenceData or use an existing class

• Create a plug-in essence codec that can import and export the essence data based on
the information in the File Descriptor

Typically, when defining a new essence format you can use the existing classes for the Slots and
Segments in the Source Package, but you do have to define a new Essence Descriptor.

Developer Release 4 68 AAF Specification Version 1.0 DR4

If the new essence type consists of a single kind of essence data, such as a single video stream or a
static image, the Source Package should have a single Slot. If the essence type is a compound format
that has multiple tracks of essence data, the File Source Package should have a separate Slot for each
separate track of essence data.

Tracking Changes with Generation
If your application stores extended data that is dependent on data stored in AAF’s built-in classes and
properties, your application may need to check if another application has modified the data in the built-in
classes and properties.

The InterchangeObject Generation property allows you to track whether another application has modified
data in an AAF file that may invalidate data that your application has stored in extensions. The Generation
property is a weak reference to the Identification object created when an AAF file is created or modified. If
your application creates extended data that is dependent on data stored in AAF built-in classes or
properties, you can use the Generation property to check if another application has modified the AAF file
since the time that your application set the extended data. To do this, your application stores the value of
the GenerationAUID of the Identification object created when your application set the value of the
extended data.

Consider the following example, an application creates a Sequence containing a Source Clip with
extended properties that contain data that make it more efficient for the application to play the Source Clip.
However, this data is dependent on the section of essence to be played and the position of the Source
Clip in the Sequence. The section of essence to be played is specified by the Source Clip’s SourceID and
SourceSlotID properties and the position in the Sequence is specified by the Sequence Components
property.

Developer Release 4 69 AAF Specification Version 1.0 DR4

Application A
creates Sequence
with Source Clip

containing
extended data

Application B
modifies AAF file
and may modify

Sequence or
Source Clip

Sequence and
Source Clip
Generation

matches
extended data

Sequence
and Source

Clip
Generation
updated if

modified by
Application B

Application A
compares

Sequence and
Source Clip

Generation with
AUID stored in

extended
properties

Does Sequence
and Source Clip

generation match
stored AUID

Yes

No Recalculate
extended data

Developer Release 4 70 AAF Specification Version 1.0 DR4

When an object is created or modified, the Generation property is set as a weak reference to the
Identification object created when the AAF file was created or opened for modification. If the Generation
property is not present in an object, that object was created or last modified when the file was first created.

Developer Release 4 71 AAF Specification Version 1.0 DR4

6. AAF Class Model and Class
Hierarchy
This specification defines the AAF class hierarchy, which is used to describe multimedia compositions and
data. A class specifies an AAF object by defining what kind of information it may contain and how it is to
be used. Each AAF class inherits from its superclass. The AAF class hierarchy does not define any
classes that inherit from more than one immediate superclass thereby avoiding the problems associated
with multiple inheritance.

An AAF object consists of a set of properties. A property consists of a property name, a property type, and
a property value.

Each class defines an object that has a set of properties. An object shall contain all the required properties
of all classes from which it inherits. There are two root classes in the AAF class hierarchy: the
InterchangeObject and the MetaDefinition classes.

The InterchangeObject class is the root for most of the classes in AAF including those for Mobs and
Essence Data. The AAFObject class defines one required property, the ObjClass property. An AAF
object specifies its class by the value of the ObjClass property. The InterchangeObject class and its
subclasses defined by this specification may be extended by defining additional optional properties for
existing classes or by defining new subclasses.

The AAFMetaDefinition class is the superclass of the ClassDefinition, PropertyDefinition, and
TypeDefinition classes. Since these classes provide the mechanism for describing and extending AAF
classes, it is not possible to add optional properties or define new subclasses to the MetaDefinition
classes described in this document.

If an AAF file contains extensions to the base AAF classes, these extensions will be defined in the file’s
AAFHeader object’s ClassDictionary and Definitions properties. An AAF file will have one and
only one Header object.

This specification describes classes, property names, and property types by name, but classes, property
names, and property types are uniquely defined in an AAF file by an AUID. These AUIDs are listed in
Appendix tbs.

Developer Release 4 72 AAF Specification Version 1.0 DR4

AAF objects are stored in an AAF file using a structured container format. The AAF reference
implementation uses Microsoft’s Structured Storage as its container format, and implements an object
management layer to specifics such as extended property set management.

Object model goals
Applications that process essence and metadata exist on a multitude of platforms, each with different
characteristics for storage capacity, throughput, multimedia hardware, and overall system architecture.
This document defines a format for the interchange of essence and metadata across applications and
across platforms.

This document provides a mechanism to encapsulate essence and metadata. It defines objects to store
and describe the essence that allow an application to determine the format of the essence and to
determine what conversions, if any, it needs to apply to the essence to process the essence.

This document provides a mechanism to synchronize essence and to describe the format of essence that
contains interleaved streams. This mechanism allows an application to synchronize separate streams of
essence that were originally derived from original media sources, such as film audio tape, and videotape,
that were created in synchronization.

This document provides a mechanism to describe the derivation of essence from the original media
sources. This mechanism allows applications to reference tape timecode and film edgecode that
correspond to the essence and allows applications to regenerate essence from the original media
sources.

This document provides a mechanism to describe compositions. Compositions contain information about
how sections of essence should be combined in sequence, how to synchronize parallel tracks of
sequences, and how to alter sections of essence or combine sections of essence by performing effects.

This document provides a mechanism to define new classes or to add optional information to existing
classes. This mechanism allows applications to store additional information in an interchange file without
restricting the interchange of the information specified by this document.

Classes and semantic rules
This document defines classes that specify the kinds of objects that can be included in a storage wrapper
file and it defines the semantic rules for including objects in a storage wrapper file.

An object consists of a set of properties. Each property has a property name, a property type, and a
property value. Each object belongs to a class that specifies the properties that it is required to have and
optional properties that it may have.

This document defines classes by defining a class hierarchy and by defining the properties for each class
in the hierarchy. This document also defines a mechanism for extending the class hierarchy by defining
new classes that are subclasses of classes defined in this document.

Developer Release 4 73 AAF Specification Version 1.0 DR4

An object shall have the required properties specified for all classes that it is a member of. An object may
have the optional properties specified for all classes that it is a member of. Annex A lists the classes in the
class hierarchy and specifies the properties that are required and the properties that are optional for each
class. Annex A also lists semantic rules, restrictions, and requirements on objects based on the object’s
class and the context in which the object is used.

The class of an object is specified by the ClassID property of the InterchangeObject class.

Class Hierarchy
Figures 6-1 through 6-4 illustrates the InterchangeObject class hierarchy. Figure 6-5 illustrates the
MetaDefinition class hierarchy.

DefinitionObject

Interchange Object

Component

ContentStorage

ControlPoint Dictionary

Essenc eData

EssenceDescriptor

Header

Identification Locator

Pack age

Slot

Parameter

TaggedValue

CompositionPackage

MaterialPackage

SourcePackage

ConstantValue VaryingValue

NetworkLocator TextLocator

EventSlot

StaticSlot

TimelineSlot

Component
Hierarchy

DefinitionObject
Hierarchy

EssenceDescriptor
Hierarchy

KLVData

Figure 6-1 Class Hierarchy: InterchangeObject

Developer Release 4 74 AAF Specification Version 1.0 DR4

Component

Transit ion

Edgecode

EssenceGroup

Event

Filler

NestedScope

OperationGroup

Pulldown

ScopeReference

Selector

Sequence

SourceReference

Timecode

TimecodeStream

TimecodeStream12M

IntraFrameMarkerGPITriggerCommentMarker
SourceClip TextClip

HTMLClip

Segment

Figure 6-2 Class Hierarchy: Component

Developer Release 4 75 AAF Specification Version 1.0 DR4

DigitalImageDescriptor

EssenceDescriptor

FileDescriptor FilmDescriptor TapeDescriptor

AIFCDes criptor

CDCIDes criptor RGB ADescriptor

HTMLDescriptor

MIDIFileDescriptor

TIFFDesc riptor

W AVEDescriptor

Figure 6-3 Class Hierarchy: EssenceDescriptor

DefinitionObject

CodecDefini tion

ContainerDefinit ion

DataDefini tion OperationDefinition

InterpolationDefinition ParameterDefini tion

PluginDefini tion

Figure 6-4 Class Hierarchy: DefinitionObject

Developer Release 4 76 AAF Specification Version 1.0 DR4

MetaDefinition

TypeDefinitionFixedArray

TypeDefinitionEnumeration

TypeDefinitionExtendibleEnumation

TypeDefinitionInteger

TypeDefinitionRecord

TypeDefinitionRename

TypeDefinitionSet

TypeDefinitionStream

TypeDefinitionString

TypeDefinitionStrongObjectReference

TypeDefin itionVariableArray

TypeDefinitionWeakObjectReference
TargetList : AUIDArray

TypeDefinitionCharacter

TypeDefinitionIndirect

TypeDefini tionOpaque

TypeDefin itionPropertyDefinitionClassDefinition

Figure 6-5 Class Hierarchy: MetaDefinition

Appendix A identifies the classes in the class hierarchy that are abstract classes. An object that belongs to
an abstract class shall also belong to a subclass of the abstract class.

An object can be used in any context where an object of its class or of one of its superclasses is allowed
subject to the restrictions listed in Appendix A.

Developer Release 4 77 AAF Specification Version 1.0 DR4

Appendix A: AAF Object Classes for
Essence and Metadata Interchange
This document contains the reference descriptions of the AAF classes. The reference pages are arranged
alphabetically.

AIFCDescriptor Class
The AIFCDescriptor class specifies that a File Source Package is associated with audio content data
formatted according to the Audio Interchange File Format with Compression (AIFC).

The AIFCDescriptor class is a subclass of the FileDescriptor class.

 The AIFC audio format is a recommended audio format, but the AIFC format is not required for
compliance with this document.

An AIFCDescriptor object shall be owned by a File Source Package.

AIFCDescript or
Sum mary : DataV alue

Fi leDescriptor

Developer Release 4 78 AAF Specification Version 1.0 DR4

An AIFCDescriptor object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:Summary PrefT:DataValue A copy of the descriptive information in the

associated AIFC Audio Data value. Required.

CDCIDescriptor Class
The CDCIDescriptor class specifies that a File Source Package is associated with video essence
formatted with one luminance component and two color-difference component as specified in this
document.

The CDCIDescriptor class is a subclass of the DigitalImageDescriptor class.

A CDCIDescriptor object shall be the EssenceDescription in a File Source Package.

CDCIDescriptor
ComponentWidth : Int32
HorizontalSubsampling : UInt32
ColorSiting : ColorSitingType
BlackReferenceLevel : UInt32
WhiteReferenceLevel : UInt32
ColorRange : UInt32
PaddingBits : Int16
VerticalSubsampling : UInt32
AlphaSamplingWidth : UInt32

DigitalImageDescriptor

A CDCIDescriptor object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation

Developer Release 4 79 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:ComponentWidth PrefT:UInt32 Specifies the number of bits

used to store each component.
Can have a value of 8, 10, or 16.
Each component in a sample is
packed contiguously; the sample
is filled with the number of bits
specified by the optional
PaddingBits property. If the
PaddingBits property is omitted,
samples are packed
contiguously. Required.

Pref:HorizontalSubsampling PrefT:UInt32 Specifies the ratio of luminance
sampling to chrominance
sampling in the horizontal
direction. For 4:2:2 video, the
value is 2, which means that
there are twice as many
luminance values as there are
color-difference values. The
other legal value is 1. Required.

Pref:ColorSiting PrefT:ColorSitingType
Specifies how to compute subsampled chrominance
component values. Values are:

0 coSiting To calculate subsampled pixels, take the
preceding pixel’s color value, discard the
other color values, and cosite the color
with the first luminance value.

1 averaging To calculate subsampled pixels, take the
average of the two adjacent pixels’ color
values, and site the color in the center of
the luminance pixels.

2 threeTap To calculate subsampled pixels, take 25
percent of the previous pixel’s color
value, 50 percent of the first value, and
25 percent of the second value. For the
first value in a row, use 75 percent of
that value since there is no previous
value. The threeTap value is only
meaningful when the
HorizontalSubsampling property has a
value of 2.

Optional; when omitted, treat as coSiting.

Developer Release 4 80 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:BlackReferenceLevel PrefT:UInt32 Specifies the digital luminance

component value associated
with black. For CCIR-601/2, the
value is 16; for YUV, the value is
0. The same value is used in
CDCI and RGBA when the
standard CCIR colorspace
conversion is used. Optional; if
omitted the default value is 0.

Pref:WhiteReferenceLevel PrefT:UInt32 Specifies the digital luminance
component value associated
with white. For CCIR-601/2, 8-bit
video, the value is 235; for YUV
8-bit video, the value is 255.
Optional; if omitted, the default
value is maximum unsigned
integer value for component
size.

Pref:ColorRange PrefT:UInt32 Specifies the range of allowable
digital chrominance component
values. Chrominance values are
signed and the range specified is
centered on 0. For CCIR-601/2,
the value is 225; for YUV the
value is 255. This value is used
for both chrominance
components. Optional; the
default value is the maximum
unsigned integer value for the
component size.

Pref:PaddingBits PrefT:Int16 Specifies the number of bits
padded to each pixel. Optional;
default is 0.

Pref:VerticalSubsampling PrefT:UInt32 Specifies the ratio of luminance
sampling to chrominance
sampling in the vertical direction.
Optional; default value is 1.

Pref:AlphaSamplingWidth PrefT:UInt32 Specifies the number of bits
used to store the Alpha
component. Optional; default
value is 0.

Note 1 This format is commonly known as YCbCr.

Note 2 Chrominance subsampling reduces storage requirements by omitting the color
difference information for some pixels. When reading the image, the color difference

Developer Release 4 81 AAF Specification Version 1.0 DR4

information for these pixels is calculated from the color difference information of the
adjacent pixels. Color siting specifies how to calculate the color difference information
when the two pixels have unequal color difference information.

CodecDefinition Class
The CodecDefinition class specifies the kind of data that can be stored in a Component.

The CodecDefinition class is a subclass of the DefinitionObject class.

All CodecDefinition objects are owned by a Dictionary object.

DefinitionObject

ClassDefinition

DataDefinition

CodecDefinition
+FileDescriptorClass

1..n1..n {set}

+DataDefini tions

All CodecDefinition objects are owned by a Dictionary object. A CodecDefinition object shall have the
required classes listed in the following table

Property Name Type Explanation
Pref:
FileDescriptorClass

PrefT:
WeakReference to
ClassDefinition

Specifies the ClassDefinition of the subclass of
FileDescriptor that identifies the essence format
that this codec processes. Required.

Pref:DataDefinition PrefT:
WeakReferenceSet
of DataDefinition

Specifies the DataDefinitions of the essence
formats that this codec processes. Required.

Developer Release 4 82 AAF Specification Version 1.0 DR4

The FileDescriptorClass property identifies the essence format that the Codec can process. For example,
a Codec that processes CDCI video data has a FileDescriptorClass that is a weak reference to the
ClassDefinition object defining the CDCIDescriptor class. Note that a Codec may not be able to process
all variants of essence formats. For example, a hardware accelerated Codec may only be able to process
some compressions within CDCI.

In most cases, a codec processes only one kind of DataDefinition. But some Codecs that process
interleaved essence data may be able to handle more than one. For example a Codec that processes
MPEG or DV essence may be able to handle both the picture and sound data.

CommentMarker Class
The CommentMarker class specifies a user comment that is associated with a point in time.

CommentMarker is a subclass of Event. A CommentMarker object may have a SourceReference that
specifies a text or audio annotation.

Event

SourceReference

CommentMarker
+Annotation

A CommentMarker object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:Annotation PrefT:StrongReference

to SourceReference
Specifies text or audio annotation. Optional.

Component Class
The Component class represents a essence element.

Developer Release 4 83 AAF Specification Version 1.0 DR4

The Component class is a subclass of InterchangeObject.

The Component class is an abstract class; consequently an object that belongs to the Component class
shall also belong to a subclass of the Component class.

I nterchange Object

DataDefinition

KLVData

Component
Length : Length +DataDefini tion

0..n0..n

+KLVData

A Component object shall have the required properties and may have the optional properties listed in the
following table. A Component object shall have or shall not have the Length property according to the rule
in the list entry 1 following the table

Property Name Type Explanation
Pref:DataDefinition PrefT:WeakReference

to DataDefinition
Specifies the DataDefinition object that specifies
the kind of data described by the component.
Required.

Pref:Length PrefT:Length Specifies the duration in edit units of the
component. Optional; see rule 1.

Pref:KLVData PrefT:
StrongReferenceVector
of KLVData

Contains a set of user KLV data consisting of a
key (a SMPTE label), a length, and a value.
Optional.

1. If a Component is in a TimelineSlot, then it shall have a Length property. If a Component is in a
StaticSlot, then it shall not have a Length property. If a Component is in an EventSlot, then it may have a
Length property. If a Component in an EventSlot does not have a Length property, then the Component
describes an instantaneous event that does not have a duration.

Developer Release 4 84 AAF Specification Version 1.0 DR4

CompositionPackage Class
The CompositionPackage class specifies how to combine content data elements into a sequence, how to
modify content data elements, and how to synchronize content data elements.

The CompositionPackage class is a subclass of the Package class.

Pack age

Com posit ionPackage
DefaultFadeLength : Length
DefFadeType : FadeType
DefFadeEditUnit : Rational

A CompositionPackage object shall have the required properties and may have the optional properties
listed in the following table.

Property Name Type Explanation
Pref:DefaultFadeLength PrefT:Length Specifies the default length of the audio fade-in

and fade-out to be applied to all audio
SourceClips that do not specify the audio fade
properties. Optional; if specified, then the default
fade type and the default fade edit units must also
be specified.

Pref:DefaultFadeType PrefT:FadeType Specifies the default type of audio fade. Optional;
if specified, then the default length and default edit
units must also be specified. Specifies the type of
the audio fade in; may have one of the following
values:

0 No fade

1 Linear amplitude fade

2 Linear power fade

3 Linear dB fade

Additional registered and private fade in types
may be defined. Optional.

Developer Release 4 85 AAF Specification Version 1.0 DR4

Pref:DefaultFadeEditUnit PrefT:Rational Specifies the edit units in which the default fade
length is specified. Optional; if specified, then the
default fade length and default fade type must
also be specified.

1. A CompositionPackage object shall have one or more Slots

2. A ContentStorage may have any number of composition Packages.

ConstantValue Class
Specifies a constant data value and a duration and is used to specify an effect control value.

The ConstantValue class is a subclass of the Parameter class.

Parameter

Cons tantValue
Value : Indirect

A ConstantValue object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:Value PrefT:Indirect Specifies the value. Required.

ContainerDefinition Class
The ContainerDefinition class specifies the mechanism used to store essence data. A container can be
either a kind of file, such as an AAF file or it can be another mechanism for storing essence data.

The ContainerDefinition class is a subclass of the DefinitionObject class.

All ContainerDefinition objects shall be owned by the Dictionary object.

Developer Release 4 86 AAF Specification Version 1.0 DR4

ContainerDefinit ion
Ess enceIsIdenti fied : Boolean

DefinitionObject

All ContainerDefinition objects shall be owned by the Dictionary object. A ContainerDefinition object may
have the optional classes listed in the following table

Property Name Type Explanation
Pref:
EssenceIsIdentified

PrefT:Boolean Specifies that the container uses the PackageID to
identify the essence data and that the container may
contain multiple essence data objects, each identified by
a PackageID. Optional.

ContentStorage Class
The ContentStorage class has the Packages and EssenceData objects in a file. A AAF file shall have one
and only one ContentStorage object.

The ContentStorage class is a subclass of the InterchangeObject class.

Interchange Object

Pack age

EssenceData

ContentStorage

0..*
{set}

+Packages

0..* {set }

+EssenceData

Developer Release 4 87 AAF Specification Version 1.0 DR4

A ContentStorage object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:Packages PrefT:

StrongReferenceSet of
Package

Has a set of all Packages in the file. Required.

Pref:EssenceData PrefT:
StrongReferenceSet of
EssenceData

Has a set of all EssenceData objects in the file.
Optional.

ControlPoint Class
The ControlPoint class specifies a value and a time point and is used to specify an effect control value.

The ControlPoint class is a subclass of InterchangeObject.

A ControlPoint shall be one of the set of ControlPoint objects in the VaryingValue PointList property.

ControlPoint
Value : Indirect
Time : Rational
EditHint : EditHintType

Interchange Object

A ControlPoint object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:Value PrefT:Indirect Specifies the value. Required.

Pref:Time PrefT:Rational Specifies the time within the Varying Value segment
for which the value is defined. Required.

Developer Release 4 88 AAF Specification Version 1.0 DR4

Pref:EditHint PrefT:EditHintType Specifies a hint to be used if the Effect starting time or
length is changed during editing. Can be
EH_Proportional, EH_RelativeLeft, or
EH_RelativeRight. Optional.

1. A Control Point object specifies the value at a specific time in a Varying Value object. The Control
Point object must have the same type as the Varying Value object owning it.

2. A Time equal to 0.0 represents the time at the beginning the Varying Value Object; a Time equal
to 1.0 represents the time at the end of the Varying Value object

DataDefinition Class
The DataDefinition class specifies the kind of data that can be stored in a Component.

The DataDefinition class is a subclass of the DefinitionObject class.

All DataDefinition objects shall be owned by a Dictionary object.

DefinitionObject

DataDefinition

The DataDefinition class does not define any additional properties.

 Note 1 A Data Definition object identifies the kind of the data produced by a
Component object.

DefinitionObject Class
The DefinitionObject is an abstract class that defines an item to be referenced.

The DefinitionObject class is a subclass of the InterchangeObject class.

The DefinitionObject class is an abstract class; consequently an object that belongs to the
DefinitionObject class shall also belong to a subclass of the DefinitionObject class.

Developer Release 4 89 AAF Specification Version 1.0 DR4

Interchange Object

DefinitionObject
Identification : AUID
Name : String
Description : String

A DefinitionObject object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:Identification PrefT:AUID Specifies the unique identifier for the item

being defined. Required.

Pref:Name PrefT:String Specifies the display name of the item being
defined. Required.

Pref:Description PrefT:String Provides an explanation of the use of the item
being defined. Optional.

Dictionary Class
The Dictionary class has Definition objects.

The Dictionary class is a subclass of the InterchangeObject class.

Developer Release 4 90 AAF Specification Version 1.0 DR4

Interchange Object

OperationDefinition

Param eterDefini tion

DataDefinition

PluginDefinition

CodecDefinition

ContainerDefinition

InterpolationDefinition

ClassDefinition

TypeDefinition

Dictionary0..*0..*
{set}

+OperationDefinitions

0.. *0.. * {set}

+ParameterDefinitions

0..*0..* {set}

+DataDefinitions

0..*0..* {set}

+PluginDefinitions

0..*0..* {set}

+CodecDefini tions

0..*0..* {set}

+ContainerDefinitions

0..*0..*
{set}

+InterpolationDefinitions

1..*1..*

1..*1..*

A Dictionary object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:ClassDefinitions PrefT:

StrongReferenceSet of
ClassDefinition

Specifies the ClassDefinitions that are
used in the file. Optional.

Pref:TypeDefinitions PrefT:
StrongReferenceSet of
TypeDefinition

Specifies the Types that are used in the
file. Optional.

Pref:OperationDefinitions PrefT:
StrongReferenceSet of
OperationDefinition

Specifies the OperationDefinitions that
are used in the file. Optional.

Pref:ParameterDefinitions PrefT:
StrongReferenceSet of
ParameterDefinition

Specifies the ParameterDefinitions that
are used in the file. Optional.

Pref:DataDefinitions PrefT:
StrongReferenceSet of
DataDefintion

Specifies the DataDefinitions that are
used in the file. Optional.

Developer Release 4 91 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:PluginDefinitions PrefT:

StrongReferenceSet of
PluginDefinition

Identifies code objects that provide an
implementation for a DefinitionObject,
such as a CodecDefinition or an
InterpolationDefinition. Optional.

Pref:CodecDefinitions PrefT:
StrongReferenceSet of
CodecDefinition

Specifies CodecDefinitions that describe
code that can compress or uncompress
samples of EssenceData or that can
convert samples to another format.

Pref:
ContainerDefinitions

PrefT:
StrongReferenceSet of
ContainerDefinition

Specifies ContainerDefinitions that
describe container mechanisms used to
store EssenceData. Optional.

Pref:
InterpolationDefinitions

PrefT:
StrongReferenceSet of
InterpolationDefinition

Specifies InterpolationDefinitions that
can calculate values in a VaryingValue
based on the values specified by the
ControlPoints. Optional.

DigitalImageDescriptor Class
The DigitalImageDescriptor class specifies that a File Source Package is associated with video content
data that is formatted either using RGBA or luminance/chrominance formatting.

The DigitalImageDescriptor class is a subclass of the FileDescriptor class.

The DigitalImageDescriptor class is an abstract class; consequently an object that belongs to the
DigitalImageDescriptor class shall also belong to a subclass of DigitalImageDescriptor.

Developer Release 4 92 AAF Specification Version 1.0 DR4

FileDescriptor

DigitalImageDescriptor
Compression : AUID
StoredHeight : UInt32
StoredWidth : UInt32
SampledHeight : UInt32
SampledWidth : UInt32
SampledXOffset : Int32
SampledYOffset : Int32
DisplayHeight : UInt32
DisplayWidth : UInt32
DisplayXOffset : Int32
DisplayYOffset : Int32
FrameLayout : LayoutType
VideoLineMap : Int32Array
ImageAspectRatio : Rational
AlphaTransparency : AlphaTransparency
Gamma : AUID
ImageAlignmentFactor : UInt32
FieldDominance : FieldNumber
FieldStartOffset : UInt32
FieldEndOffset : UInt32

A DigitalImageDescriptor object shall have the required properties and may have the optional properties
listed in the following table.

Property Name Type Explanation
Pref:Compression PrefT:AUID Kind of compression and format of compression

information. Optional; if there is no compression,
the property is omitted.

Pref:StoredHeight PrefT:UInt32 Number of pixels in vertical dimension of stored
view. Required.

Pref:StoredWidth PrefT:UInt32 Number of pixels in horizontal dimension of
stored view. Required.

Pref:SampledHeight PrefT:UInt32 Number of pixels in vertical dimension of
sampled view. Optional; the default value is
StoredHeight.

Developer Release 4 93 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:SampledWidth PrefT:UInt32 Number of pixels in horizontal dimension of

sampled view. Optional; the default value is
StoredWidth.

Pref:SampledXOffset PrefT:Int32 X offset, in pixels, from top-left corner of stored
view. Optional; default value is 0.

Pref:SampledYOffset PrefT:Int32 Y offset, in pixels from top-left corner of stored
view. Optional; default value is 0.

Pref:DisplayHeight PrefT:UInt32 Number of pixels in vertical dimension of display
view. Optional; the default value is StoredHeight.
See the Description section for an explanation of
image geometry.

Pref:DisplayWidth PrefT:UInt32 Number of pixels in vertical dimension of display
view. Optional; the default value is StoredWidth.

Pref:DisplayXOffset PrefT:Int32 X offset, in pixels, from top-left corner of stored
view. Optional; the default value is 0.

Pref:DisplayYOffset PrefT:Int32 Y offset, in pixels, from top-left corner of stored
view. Optional; the default value is 0.

Pref:FrameLayout PrefT:LayoutType Describes whether all data for a complete sample
is in one frame or is split into more than one field.
Values are

0 FULL_FRAME: frame consists of a full
sample in progressive scan lines.

1 SEPARATE_FIELDS: sample consists of
two fields, which when interlaced produce
a full sample.

2 SINGLE_FIELD: sample consists of two
interlaced fields, but only one field is stored
in the data stream.

3 MIXED_FIELDS: frame consists of a full
sample but the video was acquired with
interlaced fields.

Required.
Pref:VideoLineMap PrefT:Int32Array Specifies the scan line in the analog source that

corresponds to the beginning of each digitized
field. For single-field video, there is 1 value in the
array; for interleaved video, there are 2 values in
the array.

Pref:
ImageAspectRatio

PrefT:Rational Describes the ratio between the horizontal size
and the vertical size in the intended final image.
Required.

Developer Release 4 94 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:
AlphaTransparency

PrefT:
AlphaTransparency

Specifies whether the minimum Alpha value or
the maximum Alpha value indicates
transparency. Values are

0 kAAFMinValueTransparent: a 0 value
indicates transparency

1 kAAFMaxValueTransparent: the
maximum Alpha value indicates
transparency

Optional.

Pref:Gamma PrefT:AUID Specifies the expected output gamma setting on
the video display device. Optional.

Pref:
ImageAlignmentFactor

PrefT:UInt32 Specifies the alignment when storing the digital
essence. For example, a value of 16 means that
the image is stored on 16-byte boundaries. The
starting point for a field will always be a multiple
of 16 bytes. If the field does not end on a 16-byte
boundary, the remaining bytes are unused.
Optional; default value is 0.

Pref:FieldDominance PrefT:FieldNumber Specifies whether field 1 or field 2 is dominant in
images composed of two interlaced fields.
Optional.

Pref:
FieldStartOffset

PrefT:UInt32 Specifies unused bytes at the start of each video
field. Optional; default value is 0.

Pref:FieldEndOffset PrefT:UInt32 Specifies unused bytes at the end of each video
field. Optional; default value is 0.

1. If a DigitalImageDescriptor has any of the sampled geometry properties, SampledHeight,
SampledWidth, SampledXOffset, and SampledYOffset, it shall have all of them.

2. If a DigitalImageDescriptor has any of the display geometry properties, DisplayHeight,
DisplayWidth, DisplayXOffset, and DisplayYOffset, it shall have all of them.

3. The Compression property specifies that the image is compressed and the kind of compression
used.

4. The geometry properties describe the dimensions and meaning of the stored pixels in the image.
The geometry describes the pixels of an uncompressed image. Consequently, the geometry
properties are independent of the compression and subsampling.

Three separate geometry’s—stored view, sampled view, and display view—are used to define a
set of different views on uncompressed digital data. All views are constrained to rectangular
regions, which means that storage and sampling has to be rectangular.

The relationships among the views are described in Figure A-1.

Developer Release 4 95 AAF Specification Version 1.0 DR4

���
���
���

Display View

Sampled View

Stored View

Analog Video
Source

Information

Sample
Process

(0,0)

Figure A-1 – Stored, Sampled, and Displayed View

The stored view is the entire data region corresponding to a single uncompressed frame or field of
the image, and is defined by its horizontal and vertical dimension properties. The stored view may
include data that is not derived from, and would not usually be translated back to, analog data.

The sampled view is defined to be the rectangular dimensions in pixels corresponding to the
digital data derived from an analog or digital source. These pixels reside within the rectangle
defined by the stored view. This would include the image and auxiliary information included in the
analog or digital source. For the capture of video signals, the mapping of these views to the
original signal is determined by the VideoLineMap property.

The display view is the rectangular size in pixels corresponding to the viewable area. These pixels
contain image data suitable for scaling, display, warping, and other image processing. The display
view offsets are relative to the stored view, not to the sampled view.

Although typically the display view is a subset of the sampled view, it is possible that the viewable
area may not be a subset of the sampled data. It may overlap or even encapsulate the sampled
data. For example, a subset of the input image might be centered in a computer-generated blue
screen for use in a chroma key effect. In this case the viewable pixels on disk would contain more
than the sampled image.

Each of these data views will have a width and height value. Both the sampled view and the
display view also have offsets relative to the top left corner of the stored view.

5. The FrameLayout property describes whether a complete image is contained in one full field or in
two separate fields.

Developer Release 4 96 AAF Specification Version 1.0 DR4

6. The ImageAspectRatio describes the ratio between the horizontal size and the vertical size in the
intended final image.

7. The VideoLineMap specifies the relationship between the scan lines in the baseband signal and
the beginning of the digitized fields. The baseband lines are expressed in scan line numbers that
are appropriate for the signal format. For example, a typical 625-line two-field mapping might be
{20,332}, where scan line 20 corresponds to the first line of field 1, and scan line 332 corresponds
to the first line of field 2. Notice that the numbers are based on the whole frame, not on offsets
from the top of each field, which would be {20,20}

A value of 0 is allowed only when computer-generated essence has to be treated differently. If the
digital essence was computer generated (RGB), the values may be either {0,1} (even field first) or
{1,0} (odd field first).

8. The AlphaTransparency property determines whether the maximum alpha value or the 0 value
indicates that the pixel is transparent. If the property has a value of 1, then the maximum alpha
value is transparent and a 0 alpha value is opaque. If the property has a value of 0, then the
maximum alpha value is opaque and the 0 alpha value is transparent.

Edgecode Class
The Edgecode class stores film edge code information.

The Edgecode class is a subclass of the Segment class.

Edgecode
Start : Position
FilmKind : FilmType
CodeFormat : EdgeType
Header : DataValue

Segment

An Edgecode object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:Start PrefT:Position Specifies the edge code at the beginning of the

segment. Required.

Developer Release 4 97 AAF Specification Version 1.0 DR4

Pref:FilmKind PrefT:FilmType Specifies the type of film; one of these:

0 FT_NULL
1 FT_35MM
2 FT_16MM
3 FT_8MM
4 FT_65MM

Required.

Pref:CodeFormat PrefT:EdgeType Specifies the edge code format; one of these:

0 ET_NULL
1 ET_KEYCODE
2 ET_EDGENUM4
3 ET_EDGENUM5
Required.

Pref:Header PrefT:DataValue Specifies the text prefix that identifies the film.
Typically, this is a text string of no more than 8 7-
bit ISO characters. Optional.

EssenceData Class
The EssenceData class contains essence.

The EssenceData class is a subclass of the InterchangeObject class.

The EssenceData class is an abstract class; consequently an object that belongs to the EssenceData
class shall also belong to a subclass of EssenceData.

EssenceData
PackageID : PackageID
Data : DataStream
SampleIndex : DataStream

I nterchange Object

A EssenceData object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:PackageID PrefT:PackageID Identifies the source Package that describes the

essence. Required.

Developer Release 4 98 AAF Specification Version 1.0 DR4

Pref:Data Pref:DataStream Contains the essence data. Required.
Pref:SampleIndex Pref:DataStream Contains an index to the samples or frames. The

format of the index is determined by the Codec.
Optional.

EssenceDescriptor Class
The EssenceDescriptor class describes the format of the content data associated with a File Source
Package or of the media associated with a Physical Source Package.

The EssenceDescriptor class is a subclass of the InterchangeObject class.

The EssenceDescriptor class is an abstract class; an object that belongs to the EssenceDescriptor class
shall belong to a subclass of EssenceDescriptor.

Interchange Object

Locator

EssenceDescriptor

0..n0..n
{ordered}

+Locator

A EssenceDescriptor object may have the optional properties described in the following table.

Property Name Type Explanation
Pref:Locator PrefT:

StrongReferenceVector
of Locator

Has an array of Locator objects that provide operating-
system-dependent data or text information that provide
hints for finding files or physical media. Optional.

Locator objects provide information either for finding files or for finding physical media according to the
following rules.

1) If the object owning the locators belongs to the FileDescriptor class as well as the
EssenceDescriptor class, then the locators are owned by a file source Package and provide
information for finding files. A file source Package can have any number of locators and the
locators may belong to any subclass of Locator.

Developer Release 4 99 AAF Specification Version 1.0 DR4

2) If the object owning the locators belongs to the EssenceDescriptor class but not to the
FileDescriptor class, then the locators are owned by a physical source Package and provide
information for finding physical media. A physical source Package can have any number of
locators; the locators shall belong to the TextLocator subclass of Locator.

Note 1 Locators in a file source Packages provide hints to help find files
associated with the file source Package, but they are only hints because their correctness
cannot be guaranteed, since users may rename or delete files. Typically, this can happen
if the AAF file is renamed after being created. If your application cannot find a file by using
the hint, it can search through all accessible AAF files to find the EssenceData object with
the PackageID value.

Note 2 A essence descriptor may have more than one locator objects and a
essence descriptor may have more than one locator object of the same subclass of
Locator. For example, a file source Package may have more than one locator for any of
the following reasons:

– locators that provide hints to find the file on more than one operating system

– locators that provide more than one hint on the same operating system

EssenceGroup Class
The EssenceGroup class describes multiple digital representations of the same original content source.

The EssenceGroup class is a subclass of the Segment class.

An EssenceGroup object shall be a Segment in a Material Package Slot.

SourceReference

Essenc eGroup

1..n1..n
+Choices

+StillFrame

Segment

An EssenceGroup object shall have the required properties and may have the optional properties listed in
the following table.

Developer Release 4 100 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:Choices PrefT:

StrongReferenceVector
of Segment

Has a collection of Segment that identify the
alternate representations that may be chosen. The
order of the items in the collection is not meaningful.
Required.

Pref:StillFrame PrefT:
StrongReference to
SourceReference

Has a Source Reference that identifies the essence
for a single-frame image representation of the
essence. Optional.

1. The Segment shall either be a Source Clip or a Sequence. If the Segment is a Sequence, it shall
contain only Source Clip and Fill objects.

2. The length of each Segment in the Choices set must be the same as the length of the Essence
Group object.

3. The length of the StillFrame Source Clip must be 1.

Note Typically the different representations vary in essence format, compression, or
frame size. The application is responsible for choosing the appropriate implementation of
the essence.

Event Class
Event is an abstract class that defines a text comment, a trigger, or an area in the image that has an
associated interactive action.

Event is a subclass of Segment. Typically an Event is owned by a Sequence in an EventSlot.

The Event class is an abstract class; consequently an object that belongs to the Event class shall also
belong to a subclass of the Event class.

Event
Position : Posit...
Comment : String

Segm ent

Developer Release 4 101 AAF Specification Version 1.0 DR4

An Event object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:Position PrefT:Position Specifies the starting time of the event in the

EventSlot. Required.

Pref:Comment PrefT:String Specifies the purpose of the event. Optional.

An Event specifies its position as an absolute time expressed in the edit rates of the EventSlot that has it.

EventSlot Class
EventSlot has a Sequence of Events.

EventSlot is a subclass of Slot. An EventSlot object, as all Slots, has a concrete Segment, which is
typically a Sequence.

Slot

EventSlot
EditRate : Rat ional

An EventSlot object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:EditRate PrefT:Rational Specifies the units in which the events specify their

starting time and duration. Required.

1. An EventSlot shall have a concrete Segment that is either an Event or a Sequence.

2. If an EventSlot has a Sequence, then the Sequence shall conform to the following rules:

A. All Segments in the Sequence shall be Events.

B. All Events in the Sequence shall belong to the same concrete subclass of Event.

Developer Release 4 102 AAF Specification Version 1.0 DR4

C. All Events in the Sequence shall have the same DataDefinition as does the Sequence.

D. In a Sequence, the Position of each Event shall be greater than or equal to the Position of the
Event preceding it in the Sequence.

FileDescriptor Class
The FileDescriptor class describes essence associated with a File Source Package.

The FileDescriptor class is a subclass of the EssenceDescriptor class.

The FileDescriptor class is an abstract class; consequently an object that belongs to the FileDescriptor
class shall also belong to a subclass of the FileDescriptor class.

EssenceDescriptor

ContainerDefini tion

CodecDefinition

FileDescriptor
SampleRate : Rational
Length : Length

+ContainerFormat

+CodecDefinition

A FileDescriptor object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:SampleRate PrefT:Rational The sample rate of the essence. Optional.
Pref:Length PrefT:Length Duration of the essence in sample units.

Optional.
Pref:ContainerFormat PrefT:

WeakReference to
ContainerDefinition

Identifies the container mechanism used to store
the EssenceData. Required.

Developer Release 4 103 AAF Specification Version 1.0 DR4

Pref:CodecDefinition PrefT:
WeakReference to
CodecDefinition

Identifies the mechanism used to compress and
uncompress samples of EssenceData or used
to convert samples of EssenceData from one
format to another. Required.

1. FileDescriptors describing static essence shall omit the SampleRate and Length properties.
FileDescriptors describing time-varying essence shall specify the SampleRate and Length
properties.

2. The Essence File Descriptor specifies the sample rate and the length in the sample rate of the
essence. The sample rate of the data can be different from the edit rate of the Source Clip in the
File Source Package.

Filler Class
The Filler class represents an unspecified value for the duration of the object.

The Filler class is a subclass of the Segment class.

Segm ent

Filler

The Filler class does not define any additional properties.

Note 1 Typically, a Filler object is used in a Sequence to allow positioning of a
Segment when not all of the preceding material has been specified. Another typical use of
Filler objects is to fill time in Package Slots and Nested scope Slots that are not
referenced or played.

Note 2 If a Filler object is played, applications can choose any appropriate blank
essence to play. Typically, a video Filler object would be played as a black section, and an
audio Filler object would be played as a silent section.

FilmDescriptor Class
The FilmDescriptor class describes film media.

Developer Release 4 104 AAF Specification Version 1.0 DR4

The FilmDescriptor class is a subclass of the EssenceDescriptor class.

An FilmDescriptor object shall be the EssenceDescription of a Physical Source Package.

Es senceDescript or

FilmDescriptor
FilmFormat : FilmTy pe
Fram eRate : UInt 32
Perforat ionsPerFrame : UInt8
FilmAspec tRatio : Rational
Manufact urer : St ring
Model : St ring
FilmGaugeFormat : String
FilmBat chNumber : String

An FilmDescriptor object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:FilmFormat PrefT:FilmType Identifies the format of the film; one of the

following:

0 FT_NULL
1 FT_35MM
2 FT_16MM
3 FT_8MM
4 FT_65MM

Optional.

Pref:FrameRate PrefT:UInt32 Specifies the frame rate in frames per second.
Optional.

Pref:PerforationsPerFrame PrefT:UInt8 Specifies the number of perforations per frame
on the film stock. Optional.

Pref:FilmAspectRatio PrefT:Rational Ratio between the horizontal size of the frame
image and the vertical size of the frame image.
Optional.

Pref:Manufacturer PrefT:String A string to display to end users, indicating the
manufacturer of the film. Optional.

Pref:Model PrefT:String A string to display to end users, indicating the
manufacturer’s brand designation for the film,
such as “5247”. Optional.

Developer Release 4 105 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:FilmGaugeFormat PrefT:String Specifies the gauge and film format, such as

“Blair Viventoscope”. Optional

Pref:FilmBatchNumber PrefT:String Specifies the batch number identifying the film.
Optional.

GPITrigger Class
GPITrigger specifies a trigger action that should be taken when the GPITrigger is reached.

GPITrigger is a subclass of Event. GPITrigger objects are owned by a Sequence in an EventSlot
object.

Event

GPITrigger
ActiveState : Boolean

A GPITrigger object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:ActiveState PrefT:Boolean Specifies whether the event is turned on or off.

Required.

An GPITrigger object specifies a trigger action that should be taken when its position in time is reached.
The ActiveState property specifies whether the trigger should be set on or off.

Header Class
The Header class provides file-wide information and indexes. An AAF file shall have one and only one
Header object.

The Header class is a subclass of the InterchangeObject class.

Developer Release 4 106 AAF Specification Version 1.0 DR4

Interchange Object

ContentStorage

Dictionary

Ident ification

Header
ByteOrder : Int16
LastModified : Timestamp
Version : VersionType

+Content

+Dictionary

1..n1..n {ordered}

+IdentificationList

The Header object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:ByteOrder PrefT:Int16 Specifies the byte order for the AAF

file. One of the following:

’II’ Little-endian byte
order

’MM’ Big-endian byte
order

Required.

Pref:LastModified PrefT:TimeStamp Time and Date the file was last
modified. Required.

Pref:Content PrefT:StrongReference
to ContentStorage

Has the ContentStorage object that
has all Packages and Essence Data
in the file. Required.

Developer Release 4 107 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:Dictionary PrefT:StrongReference

to Dictionary
Has a Dictionary object that has the
DefinitionObjects that define the
classes, control codes, data
definitions, effects, properties, and
types, Data Definition and Effect
Definition objects defined in the AAF
file. Required.

Pref:Version PrefT:VersionType Version number of this document that
the file conforms to; shall be 1.0 or
higher. Required.

Pref:IdentificationList PrefT:
StrongReferenceVector
of Identification

Has an ordered set of Identification
objects, which identify the application
that created or modified the AAF file.
Required.

1. Each Edit Interchange file shall have exactly one Header object.

Note 1 The value of the ByteOrder property is either ’MM’ (hexadecimal 0x4d4d)
for big-endian byte order, which is used in some architectures such as the Motorola 680x0
architecture, or ’II’ (hexadecimal 0x4949) for little-endian byte order, which is used in
some architectures such as the Intel x86 architecture. Big-endian and little-endian refer to
whether the most- or least-significant byte is stored first. In the big-endian byte order, the
most-significant byte is stored first (at the address specified, which is the lowest address
of the series of bytes that constitute the value). In the little-endian byte order, the least-
significant byte is stored first. In both cases, bytes are stored with the most-significant bit
first.

Note 2 The value of LastModified represents the last time the file was modified.

HTMLClip Class
HTMLClip is a reference to HTML text essence.

The HTMLClip class is a subclass of the TextClip class.

TextClip

HTMLClip
BeginAnchor : String
EndAnchor : String

Developer Release 4 108 AAF Specification Version 1.0 DR4

An HTMLClip object may have the optional properties listed in the following table.

Property Name Type Explanation
Pref:BeginAnchor PrefT:String Specifies the HTML tag that defines the start of

the text. Optional.

Pref:EndAnchor PrefT:String Specifies the HTML tag that defines the end of the
text. Optional.

Typically an HTMLClip is in a StaticSlot and defines a section of HTML text that is associated with the
essence data in a parallel TimelineSlot. The duration of the HTMLClip defines the extent of the
association with the parallel Package Slot.

The BeginAnchor and EndAnchor properties specify the HTML tags that delineate the start and end of the
referenced text. The BeginAnchor tag shall precede the EndAnchor tag. If the BeginAnchor and
EndAnchor properties are omitted, the HTMLClip references all the HTML text in the essence data object.

An HTMLClip object has an association with a Slot object describing HTML essence data. .

HTMLDescriptor Class
HTMLDescriptor specifies that the essence data is in HTML text format.

HTMLDescriptor is a subclass of FileDescriptor. An HTMLDescriptor object is owned by a File
SourcePackage object.

FileDescriptor

HTMLDescriptor

HTMLDescriptor does not specify any properties.

An HTMLDescriptor object specifies that the File SourcePackage describes an HTML object, which
contains text, formatted according to the HTML standard.

Developer Release 4 109 AAF Specification Version 1.0 DR4

Identification Class
Identification provides information about the application that created or modified the file.

Identification is a subclass of InterchangeObject.

All Identification objects in a file shall be included in the IdentificationList of the Header object.

Ident ification
Com panyName : String
ProductNam e : String
ProductVersion : ProductVersion
ProductVersionSt ring : String
ProductID : A UID
Date : TimeSt amp
Toolki tVers ion : ProductVersion
Platform : AUID
GenerationA UID : AUID

Interchange Object

An Identification object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:GenerationAUID PrefT:AUID AUID generated at the time the application

created or opened for modification the file.
Required.

Pref:CompanyName PrefT:String Specifies the name of the company or
organization that created the application.
Required.

Pref:ProductName PrefT:String Specifies the name of the application.
Required.

Pref:ProductVersion PrefT:ProductVersion Specifies the version number of the
application. Consists of 5 16-bit integer
values that specify the version of an
application. The first four integers specify the
major, minor, tertiary, and patch version
numbers. The fifth integer has the following
values:

Developer Release 4 110 AAF Specification Version 1.0 DR4

Property Name Type Explanation
0 kVersionUnknown: No additional
version information

1 kVersionReleased: Released product

2 kVersionDebug: Development
version

3 kVersionPatched: Released product
with patches

4 kVersionBeta: Prerelease beta test
version

5 kVersionPrivateBuild: Private build

Optional.

Pref:
ProductVersionString

PrefT:String Specifies the version number of the
application in string form. Required.

Pref:ProductID PrefT:AUID Identifies the application. Required.

Pref:Date PrefT:TimeStamp Time and date the application created or
modified the AAF file. Required.

Pref:SDKVersion PrefT:ProductVersion Specifies the version number of the SDK
library. Optional.

Pref:Platform PrefT:String Specifies the platform on which the
application is running. Optional.

The Identification class identifies the application that created or modified the file.

InterchangeObject Class
The InterchangeObject class is a root class. All classes defined in an AAF file shall be subclasses of
InterchangeObject with the exception of the MetaDefinition classes defined by this document.

The InterchangeObject class is an abstract class; consequently an object that belongs to the
InterchangeObject class shall also belong to a subclass of the InterchangeObject class.

ClassDefinition

Interchange Object
Generation : AUID

+ObjClass

Developer Release 4 111 AAF Specification Version 1.0 DR4

An InterchangeObject shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:ObjClass PrefT:WeakReference to

ClassDefinition
Identifies the class of the object. Required.

Pref:Generation PrefT:AUID Identifies when the object was created or last
modified. Optional. If omitted, the object was
created or last modified in the first generation of
the file.

.

InterpolationDefinition Class
The InterpolationDefinition class specifies the mechanism used to calculate the values produced by a
VaryingValue using the specified ControlPoints.

The InterpolationDefinition class is a subclass of the DefinitionObject class.

All InterpolationDefinition objects shall be owned by a Dictionary object.

InterpolationDefinition

DefinitionObject

The InterpolationDefinition class does not define any additional properties.

IntraFrameMarker Class
IntraFrameMarker specifies an area in an image that can cause an action if a user specifies it during
composition playback (typically by clicking in the specified area).

IntraFrameMarker is a subclass of Event. IntraFrameMarker objects are owned by a Sequence in an
EventSlot.

Developer Release 4 112 AAF Specification Version 1.0 DR4

Event

SourceReference

IntraFrameMarker
HotSpotRect : Rectangle +HotSpotMatte

An IntraframeMarker object shall have the properties listed in the following table as specified by the rules
following the table.

Property Name Type Explanation
Pref:HotSpotRect PrefT:Rectangle Specifies an area on the image that can cause an

interactive action. Optional.

Pref:HotSpotMatte PrefT:
StrongReference to
SourceClip

Specifies a SourceClip with a datadefinition of Matte.
Optional

1. An IntraFrameMarker object shall have at least one of the following properties: HotSpotRect and
HotSpotMatte.

2. If an IntraFrameMarker object has both a HotSpotRect and a HotSpotMatte property, the HotSpotMatte
property defines the interactive region. In this case, the HotSpotRect provides supplementary information.

An IntraframeMarker defines a region of an image that has an interactive event associated with it.

KLVData Class
KLVData contains user data specified with a Key (SMPTE label), Length, and Value.

KLVData is a subclass of InterchangeObject.

Developer Release 4 113 AAF Specification Version 1.0 DR4

KLVData
Value : Opaque

Interchange Object

A KLVData object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:Value PrefT:Opaque Specifies the key, length, and value. Required.

Locator Class
The Locator class provides information to help find a file that contains the essence.

The Locator class is a subclass of the InterchangeObject class.

The Locator class is an abstract class; consequently object that belongs to the Locator class shall also
belong to a subclass of Locator.

Locator

Interchange Object

The Locator class does not define any additional properties.

MaterialPackage Class
The MaterialPackage class provides access to the File Source Packages and EssenceData Objects.

The MaterialPackage class is a subclass of the Package class.

Developer Release 4 114 AAF Specification Version 1.0 DR4

All MaterialPackage objects in a file shall be owned by the ContentStorage object.

MaterialPackage

Pack age

The MaterialPackage class does not define any additional properties.

An MaterialPackage object shall have one or more Slots.

MIDIFileDescriptor class
MIDIFileDescriptor specifies that essence data is in the MIDI music file format.

MIDIFileDescriptor is a subclass of FileDescriptor. MIDIFileDescriptor objects are owned by a File Source
Package object.

MIDIFileDescriptor

FileDescriptor

MIDIFileDescriptor does not define any properties.

An MIDIFileDescriptor describes a MIDI object that contains multi-track MIDI stream data stored in the
Standard MIDI File 1.0 format. The MIDI file data may be stored with either timecode-based times or
metrical times. (Metrical times are stored as subdivisions of a quarter note, and related to real time by a
tempo map).

If the MIDI file data is stored with timecode-based times, the SampleRate property of the
MIDIFileDescriptor Class shall specify the MIDI file's delta-time interval expressed as an edit rate.
Referring to the MIDI file specification, this information is specified in the <division> word of the header

Developer Release 4 115 AAF Specification Version 1.0 DR4

chunk. The SampleRate is the sample rate corresponding to the MIDI format specified in the <division>
word, multiplied by the "ticks per frame" value specified in the <division> word.

If the MIDI file data is stored with metrical times, the tempo map stored in the MIDI file data provides a
conversion from each metrical time to a real time (in seconds). The MIDI file will be referenced from
Packages using only real times. The application must make an implicit conversion from the metrical times
to real time to determine which section of the MIDI file data is being referenced. As such, the SampleRate
property may be any arbitrary value. It merely provides a reference rate for specifying the length of the
MIDI file, and a resolution for identifying locations within the MIDI file by real time. We recommend using a
rate that matches the edit rate of tracks in CompositionPackages that reference MIDI data.

As the MIDI file specification states, tempo meta-events describing the tempo map must be stored in the
first track of the MIDI file. If there is no tempo meta-event at the beginning of first track, a default tempo of
120 quarter notes per minute is assumed.

The MIDIFileDescriptor Length property should be the maximum of the times of the End of Track meta-
events for all tracks in the MIDI file, expressed in the SampleRate.

Tracks in MIDI files

A MIDI file may contain multiple tracks. The associated SourcePackage must have a Slot for each track
stored in the MIDI file. The Slot PhysicalTrack property identifies the corresponding track within the MIDI
file, beginning with 1 for the first track in the MIDI file.

The Slot SlotName property provides the name of the track. The names stored in Track Name meta-
events within the MIDI file are ignored. It is recommended that the Track Name meta-events, if present,
match the TrackName properties of the Slots.

Each Slot of the MIDIFileSourcePackage should have as its Segment a single SourceClip that does not
have a SourceID property, a DataDefinition of MIDI, and a length corresponding to the position of the End
of Track meta-event stored in the corresponding track of the MIDI file data.

Each Slot of the MIDIFileSourcePackage should have an EditRate that matches the SampleRate of the
MIDIFileDescriptor (MIDD) attached to that SourcePackage.

SMPTE timecode

The SMPTE Offset meta-event in the MIDI file data is ignored. It is recommended that this timecode
information be represented by a timecode track within the SourcePackage associated with the MIDI file
data.

NestedScope Class
The NestedScope class defines a scope and has an ordered set of Segments.

The NestedScope class is a subclass of the Segment class.

Developer Release 4 116 AAF Specification Version 1.0 DR4

Segment

NestedScope

1..n1..n
{ordered}

+Slots

A NestedScope object shall the required properties listed in the following table.

Property Name Type Explanation
Pref:Slots PrefT:

StrongReferenceVector of
Segment

Has an ordered set of Segments; the last segment
provides the value for the Nested Scope object.
Required.

1. The length of each Segment object in the set must be equal to the length of the Nested Scope
object.

2. The data kind of the last Segment in the set must be the same as the data kind of the Nested
Scope object.

Note 1 A Nested Scope object defines a scope and has an ordered set of
Segments and produces the value specified by the last Segment in the ordered set.
Nested Scopes are typically included in Composition Packages to allow more than one
Component to share access to a Segment. You can allow this sharing by using a Nested
Scope object or by using the scope defined by a Package.

NetworkLocator Class
NetworkLocator provides information to help find a file containing essence data.

NetworkLocator is a subclass of Locator. Locators can be used in FileDescriptors, which are owned by
FileSourcePackages.

Developer Release 4 117 AAF Specification Version 1.0 DR4

NetworkLocator
URLString : String

Locator

Property Name Type Explanation
Pref:URLString PrefT:String Universal Resource Locator (URL) for file

containing the essence data. Required.

The NetworkLocator has a URL that provides a hint to help an application find a file containing the
essence data.

OperationDefinition Class
The OperationDefinition class identifies an operation that is performed on an array of Segments.

The OperationDefinition class is a subclass of the DefinitionObject class.

All OperationDefinition objects shall be owned by a Dictionary object.

Developer Release 4 118 AAF Specification Version 1.0 DR4

DefinitionObject

DataDefinit ion

ParameterDefinition

OperationDefinition
IsTimeWarp : Boolean
Category : AUID
NumberInputs : Int32
Bypass : UInt32

+DataDefinit ion

0..n0..n

+ParametersDefined

0..n0..n

{ordered}

+DegradeTo

An OperationDefinition object shall have the required properties and may have the optional properties
listed in the following table.

Property Name Type Explanation
Pref:DataDefinition PrefT:

WeakReference to
DataDefinition

Identifies the kind of data that is produced by
the operation. Required.

Pref:IsTimeWarp PrefT:Boolean If true, specifies that the duration of the input
segments can be different from the duration
of the Operation. Optional; default value is
false.

Pref:DegradeTo PrefT:
WeakReferenceVector
to OperationDefinition

Specify simpler operations that an application
can substitute for the defined operation if it
cannot process it. Optional

Pref:Category PrefT:AUID Specifies the kind of operation, such as
Video Effect, Audio Effect, or 3D operation.
Required.

Pref:NumberInputs PrefT:Int32 Specifies the number of input segments. A
value of -1 indicates that the effect can have
any number of input segments. Required.

Pref:Bypass PrefT:Uint32 Specifies then array index (1-based) of the
input segment which is the primary input.
Optional.

Developer Release 4 119 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:ParametersDefined PrefT:

WeakReferenceSet of
ParameterDefinition

Specify the Parameters that can be used as
controls for the operation. Optional

OperationGroup Class
The OperationGroup class contains an ordered set of Segments and an operation that is performed on
these Segments.

The OperationGroup class is a subclass of the Segment class

An OperationGroup object can only be part of a Composition Package.

OperationDefinition

Parameter
SourceRef erenc e

Segment

OperationGroup
BypassOverride : UInt32

+OperationDefinition

0..*

+Parameters

+Rendering

0..n0..n
{ordered}

+InputSegments

An Effect object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation

Developer Release 4 120 AAF Specification Version 1.0 DR4

Pref:
OperationDefinition

PrefT:WeakReference
to OperationDefinition

Has a weak reference to an Operation
Definition that identifies the kind of operation.
Required.

Pref:InputSegments PrefT:
StrongReferenceVector
of Segment

Has an array of input segments for the
operation. Optional.

Pref:Parameters PrefT:
StrongReferenceVector
of Parameter

Has an array of control Parameters. The
order is not meaningful. Optional.

Pref:Rendering PrefT:StrongReference
to SourceReference

Specifies a rendered or precomputed version
of the operation. Optional.

Pref:BypassOverride PrefT:UInt32 Specifies then array index (1-based) of the
input segment which is the primary input.
This overrides any bypass specified by the
OperationDefinition. Optional.

1. In all OperationGroup objects, the length of the Rendering Source Clip must each equal the length
of the OperationGroup.

2. In OperationGroup objects whose Operation Definition object does not specify a time warp the
length of each input Segment each equal the length of the OperationGroup.

3. In OperationGroup that is in a Transition, the input segments are provided by the Transition and the
InputSegments property should be omitted.

Package Class
The Package class specifies a Package, which can describe a composition, essence, or physical media.

The Package class is a subclass of the InterchangeObject class.

The Package class is an abstract class; consequently an object that belongs to the Package class shall
also belong to a subclass of Package.

Developer Release 4 121 AAF Specification Version 1.0 DR4

Interchange Object

Slot

TaggedValue
Name : String
Value : Indirect

KLVData

Pack age
PackageID : Pack ageID
Name : String
LastModified : TimeStamp
Creat ionTime : Tim eStamp 1..n1..n

{ordered}

+Slots

0..n0..n

+UserComments

0.. n0.. n

+KLVData

A Package object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:PackageID PrefT:PackageID Unique Package Identification. Required.

Pref:Name PrefT:String Name of Package for display to end user.
Optional.

Pref:Slots PrefT:
StrongReferenceVector
of Slots

Has an ordered set of Slots. Required.

Pref:LastModified PrefT:TimeStamp Date and time when the Package was last
modified. Required.

Pref:CreationTime PrefT:TimeStamp Date and time when the Package was originally
created. Required.

Developer Release 4 122 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:UserComments PrefT:

StrongReferenceVector
of TaggedValues

Has a set of TaggedValues that specify user
comments. Optional.

Pref:KLVData PrefT:
StrongReferenceVector
of KLVData

Contains a set of user KLV data consisting of a
key (a SMPTE label), a length, and a value.
Optional.

1. A Package object shall have one or more Slots.

Note 1 Packages have a globally unique ID, and they are the only elements of an
AAF file that can be referenced from outside the file.

Note 2 Slots are ordered to allow ScopeReferences within one slot to reference
another slot. The Package defines a scope consisting of the ordered set of Slots. A
ScopeReference object in a Slot can refer to any Slot that precedes it. A ScopeReference
returns the same time-varying values as the section in the specified Package Slot that
corresponds to the starting point of the ScopeReference in the Slot and the duration of the
ScopeReference. In addition to Packages, NestedScope objects define scopes; however,
their scope is limited to the Components owned by the Nested scope object’s slots.

Parameter Class
Parameter class specifies a control argument for an effect.

Parameter class is a subclass of Object. Parameter objects are owned by Effect objects.

Parameter is an abstract class; consequently, any object that belongs to the Parameter class shall also
belong to a subclass of Parameter.

Interchange Object

ParameterDefinition

Param eter
+Definition

Developer Release 4 123 AAF Specification Version 1.0 DR4

A Parameter object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:Definition PrefT:WeakReference

to ParameterDefinition
Identifies the Parameter. Required.

A Parameter object is an effect control, which specifies values for adjustments in the way the effect should
be performed.

An effect can have constant control parameters or have control parameters whose values vary over time.
For example, a picture-in-picture effect where the size and transparency of the inserted picture stays
constant throughout the effect has constant control parameters, but a picture-in-picture effect that starts
with a small inserted picture that grows larger during the effect has control arguments with time-varying
values.

A constant control argument can be specified with a Constant Value object. A time-varying value is
specified with a Varying Value object.

ParameterDefinition Class
The ParameterDefinition class defines a kind of Parameter for an effect.

The ParameterDefinition class is a subclass of the DefinitionObject class.

All ParameterDefinition objects in a file shall be owned by the Dictionary object.

Def init ionObject

TypeDefinition

ParameterDefinition
DisplayUnits : String +Type

A ParameterDefinition object shall have the required properties and may have the optional properties
listed in the following table.

Developer Release 4 124 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:Type PrefT:WeakReference

to TypeDefinition
Specifies the data type of the Parameter.
Required.

The value of a Parameter is specified in a property with an Indirect type. The Indirect type must specify the
same TypeDefinition as its corresponding ParameterDefinition. The values of Parameters are specified in
the ConstantValue Value property and in the ControlPoint Value property. ControlPoints are contained in
the VaryingValues subclass of Parameter.

PluginDefinition Class
The PluginDefinition class identifies code objects that provide an implementation for a DefinitionObject,
such as CodecDefinition or for a MetaDefinition, such as a ClassDefinition.

The PluginDefinition class is a subclass of the DefinitionObject class.

Developer Release 4 125 AAF Specification Version 1.0 DR4

Net workLocator

Locator

PluginDefinition
Category Class : AUID
VersionNumber : VersionType
VersionString : S tring
Manufacturer : String
ManfacturerID : AUID
Platform : AUID
MinPlat formVersion : VersionType
MaxPlatformVersion : V ersionType
Engine : AUID
MinEngineVersion : VersionType
MaxEngineVersion : VersionType
PluginAPI : AUID
MinPluginAP I : V ersionType
MaxPluginAPI : VersionType
SoftwareOnly : Boolean
Accelerator : Boolean
Authentication : Boolean
Definit ionObject : AUID

+ManufacturerInfo

0..n0..n {ordered}

+Locators

DefinitionObject

All PluginDefinition objects shall be owned by a Dictionary object. A PluginDefinition object shall have the
required properties and may have the optional classes listed in the following table

Property Name Type Explanation
Pref:CategoryClass PrefT: AUID Specifies the kind of plugin. Required.
Pref:VersionNumber PrefT: VersionType Specifies the version of the plugin. Required.
Pref:VersionString PrefT:String Specifies a string that can be used to identify

the plugin version to the user. Optional.
Pref:Manufacturer PrefT:String Specifies a string that can be used to identify

the plugin manufacturer to the user. Optional.

Developer Release 4 126 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:
ManufacturerInfo

PrefT:
StrongReference to
NetworkLocator

Specifies a NetworkLocator that identifies a
web page containing information about the
manufacturer. Optional.

Pref:ManufacturerID PrefT:AUID Specifies a SMPTE label or other unique
identifier that is assigned to identify the
manufacturer. Optional.

Pref:Platform PrefT:AUID Identifies the platform environment, which
consists of the hardware platform and the
operating system, required by the plugin.
Optional.

Pref:
MinPlatformVersion

PrefT: VersionType Specifies the minimum version number of the
specified platform that the plugin requires.
Optional.

Pref:
MaxPlatformVersion

PrefT: VersionType Specifies the maximum version number of the
specified platform that the plugin requires.
Optional.

Pref:Engine PrefT:AUID Identifies the software subsystem used for
essence management and playback used by
the plugin. Optional.

Pref:
MinEngineVersion

PrefT: VersionType Specifies the minimum version number of the
specified engine that the plugin requires.
Optional.

Pref:
MaxEngineVersion

PrefT: VersionType Specifies the maximum version number of the
specified engine that the plugin requires.
Optional.

Pref:PluginAPI PrefT:AUID Identifies the plugin interfaces supported by the
plugin. Optional.

Pref:MinPluginAPI PrefT: VersionType Specifies the minimum version number of the
specified plugin interfaces that the plugin
supports. Optional.

Pref:MaxPluginAPT PrefT: VersionType Specifies the maximum version number of the
specified plugin interfaces that the plugin
supports. Optional.

Pref:SoftwareOnly PrefT:Boolean Specifies if the plugin is capable of executing in
a software-only environment. Optional; default
value is False.

Pref:Accelerator PrefT:Boolean Specifies if the plugin is capable of using
hardware to accelerate essence processing.
Optional; default value is False.

Pref:Locators PrefT:
StrongReferenceVector
of Locator

Specifies an ordered list of locators that identify
locations that provide access to the plugin
implementation. Optional.

Pref:Authentication PrefT:Boolean Specifies that the plugin implementation
supports authentication. Optional; default value
is False.

Developer Release 4 127 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:
DefinitionObject

AUID Specifies the AUID of the ClassDefinition for
the DefinitionObject or MetaDefinition that it
provides an implementation of. Required.

Pulldown Class
Pulldown converts between film frame rates and videotape frame rates.

Pulldown is a subclass of Segment. Pulldown has either a SourceClip or a Timecode object. Pulldown
objects are typically used in FileSourcePackages and Physical SourcePackages.

Segment

Pulldown
PulldownKind : PulldownKindType
PulldownDirection : PulldownDirect ionType
Phas eFram e : Phas eFram eType

+InputSegment

A Pulldown object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:InputSegment PrefT:StrongReference to

Segment
Has a Segment that is either a SourceClip or
Timecode. The length of the SourceClip or
Timecode object is in the edit units determined
by the PulldownKind and PulldownDirection.
Required

Developer Release 4 128 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:PulldownKind PrefT:PulldownKindType Specifies whether the Pulldown object is

converting from 525-line (30000/1001 frames
per second) or 625-line (24 frames per second)
and whether frames are dropped or the video is
played at another speed. Values are:

0 kTwoThreePD Converting between
525-line and film by dropping or adding frames

1 kPalPD Converting between 625-line
and film by dropping or adding frames

2 kOneToOneNTSC Converting
between 525-line and film by speeding up or
slowing down the frame rate.

3 kOneToOnePAL Converting
between 625-line and film by speeding up or
slowing down the frame rate.

4 kVideoTapNTSC Converting
between 525-line and film by recording original
film and video sources simultaneously.

Required.

Pref:
PulldownDirection

PrefT:
PulldownDirectionType

Specifies whether the Pulldown object is
converting from tape to film speed or from film
to tape speed. Values are:

0 kVideoToFilmSpeed The
InputSegment is at video speed and the
Package track owning the Pulldown object is at
film speed.

1 kFilmToVideoSpeed The
InputSegment is at film speed and the Package
track owning the Pulldown object is at video
speed.

Required.

Pref:PhaseFrame PrefT:PhaseFrameType Specifies the phase within the repeating
pulldown pattern of the first frame after the
pulldown conversion. A value of 0 specifies that
the Pulldown object starts at the beginning of
the pulldown pattern. Required.

An Pulldown object provides a mechanism to convert from essence between video and film rates and
describes the mechanism that was used to convert the essence. Pulldown objects are typically used in
three ways:

1. In a tape SourcePackage to describe how the videotape was created from film

2. In a file SourcePackage that has digital essence at film speed to describe how the digital essence
was created from the videotape

Developer Release 4 129 AAF Specification Version 1.0 DR4

3. In a Package to create Timecode tracks at different edit rates

The object owned by the Pulldown object has an edit time specified by the essence speed that the
Pulldown object is converting from.

Each kind of pulldown identifies the speed of the tape. If two SourcePackages have a pulldown
relationship, the edit rates of the video tracks should correspond to the frame rate of the essence.

RGBADescriptor Class
The RGBADescriptor class specifies that a File Source Package is associated with video content data
formatted with three color component or with three color components and an alpha component.

The RGBADescriptor class is a subclass of the DigitalImageDescriptor class.

An RGBADescriptor object shall be the EssenceDescription in a File Source Package.

RGB ADes criptor
PixelLayout : RGB ALayout
Palet te : DataValue
Palet teLayout : RGBALayout

DigitalImageDescriptor

An RGBADescriptor object shall have the required properties and may have the optional properties listed
in the following table.

Developer Release 4 130 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:PixelLayout PrefT:RGBALayout Specifies the order and size of the

components within the pixel. The
RGBALayout type is a fixed-size 8
element array, where each element
consists of the RGBAComponent type
with the following fields:

Code Enumerated value
specifying component

Size UInt8 integer specifying the
number of bits

For each component in the pixel, the
following codes should be specified:

0x52 ‘R’ Red component
0x47 ‘G’ Green component
0x42 ‘B’ Blue component
0x41 ‘A’ Alpha component
0x46 ‘F’ Fill component
0x50 ‘P’ Palette code
0x00 Terminates list of

components
A Fill component indicates unused
bits. After the components have been
specified, the remaining Code and
Size fields should be set to 0.
Required.

Pref:Palette PrefT:DataValue An array of color values that are used
to specify an image. Optional.

Pref:PaletteLayout PrefT:RGBALayout An array of RGBAComponent that
specifies the order and size of the
color components as they are stored
in the palette. Optional.

1. If the PixelLayout property includes an ‘R’, ‘G’, or ‘B’, then it shall not include a ‘P’. If the
PixelLayout property includes a ‘P’, then it shall not include an ‘R’, ‘G’, or ‘B’.

2. If the PixelLayout property includes a ‘P’, then the RGBADescriptor object shall have the Palette,
PaletteLayout, and PaletteStructure properties.

Note 1 An RGBADescriptor object describes content data that contains
component-based images where each pixel is made up of a red, a green and a blue
value. Optionally, an alpha value can be included in each pixel. The alpha value
determines the transparency of the color. Each pixel can be described directly with a
component value or a by an index into a pixel palette.

Developer Release 4 131 AAF Specification Version 1.0 DR4

Note 2 Properties in the RGBADescriptor allow you to specify the order that the
color components are stored in the image, the number of bits needed to store a pixel, and
the bits allocated to each component.

Note 3 If a color palette is used, the descriptor allows you to specify the color
palette and the structure used to store each color in the palette.

Note 4 RGBA content data can be converted to CDCI and then compressed with
JPEG. Once the data has been converted and compressed, it is described by a
CDCIDescriptor Essence Descriptor.

ScopeReference Class
The ScopeReference class refers to a section in the specified Package Slot or Nested Scope slot.

The ScopeReference class is a subclass of the Segment class.

Segment

ScopeReference
RelativeScope : UInt32
RelativeSlot : UInt32

An ScopeReference object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:RelativeScope PrefT:UInt32 Specifies the number of Nested Scopes to pass

to find the Nested Scope or Package owning the
slot. Required.

Pref:RelativeSlot PrefT:UInt32 Specifies the number of slots that precede the
slot owning the Scope Reference to pass to find
the slot referenced. Required.

1. The data kind of the Segment in the referenced slot must be the same as the data kind of the
Scope Reference object.

2. The value of RelativeScope must be less than or equal to the number of Nested Scope objects
that has the Scope Reference. If the Scope Reference is not owned by a Nested Scope object,
then it can only refer to a slot defined by the Package’s scope and the RelativeScope must have a
value of 0.

Developer Release 4 132 AAF Specification Version 1.0 DR4

3. The value of RelativeSlot must be greater than 0 and less than or equal to the number of slots
that precede it within the scope specified by RelativeScope.

4. If the scope reference references a Package slot that specifies a different edit rate than the
Package slot owning the scope reference, the Length value and the offset in the track owning the
scope reference must be converted from the edit rate of the track owning the scope reference to
the edit rate of the referenced track.

Note 1 A Scope Reference object has the same time-varying values as the
section of the Nested Scope slot or Package Slot that it references. Scope Reference
objects allow one or more objects to share the values produced by a section of a slot.

Note 2 If a Scope Reference specifies a Package slot, the corresponding section
of the slot is the one that has the equivalent starting position from the beginning of the
Package slot and the equivalent length as the Scope Reference object has within its
Package slot. If the specified Package Slot has a different edit rate than the Package Slot
owning the Scope Reference, the starting position and duration are converted to the
specified Package Slots edit units to find the corresponding section.

Note 3 If a Scope Reference specifies a Nested Scope slot, the corresponding
section of the slot is the one that has the same starting position offset from the beginning
of the Nested Scope segments and the same duration as the Scope Reference object
has in the specified scope.

Note 4 Relative scope is specified as an unsigned integer. It specifies the
number of nested scopes that you must pass through to find the referenced scope. A
value of 0 specifies the current scope, that is the innermost Nested Scope object that has
the Scope Reference or the Package scope if no Nested Scope object has it. A value of 1
specifies the scope level that has the Nested Scope object that has the Scope Reference.

Note 5 Relative slot is specified as a positive integer. It specifies the number of
preceding slots that you must pass to find the referenced slot within the specified relative
scope. A value of 1 specifies the immediately preceding slot.

Note 6 If a ScopeReference refers to a Slot, the Slot shall belong to the same
subclass of Slot as the Slot owning the ScopeReference object. This means that
ScopeReferences should not be used to convert between timeline, static, and event data;
use SourceClips or SourceClips in conjunction with Effect to perform these conversions.

Segment Class
The Segment class represents a Component that is independent of any surrounding object.

The Segment class is a subclass of the Component class.

Developer Release 4 133 AAF Specification Version 1.0 DR4

The Segment class is an abstract class; consequently an object that belongs to the Segment class shall
also belong to one of the subclasses of Segment.

Segm ent

Com ponent

Segment does not define any additional properties.

Selector Class
The Selector class provides the value of a single Segment while preserving references to unused
alternatives.

The Selector class is a subclass of the Segment class.

Segment

Selector

0..n0..n

+Alternates+Selected

The Selector class shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:Selected PrefT:

StrongReference to
Segment

Has the selected Segment. Required.

Pref:Alternates PrefT:
StrongReferenceVector
of Segment

Has a set of unused alternative Segments.
Optional.

1. The duration of the selected Segment and of each alternative Segment shall equal the duration of
the Selector object.

Developer Release 4 134 AAF Specification Version 1.0 DR4

2. The data kind of the selected Segment and of each alternative Segment shall be the same as the
data kind of the Selector object.

Note A Selector object represents an editing decision. This is in contrast with a
Essence Group object which presents a group of alternative implementations of the same
essence that the application can choose from based on the most appropriate or efficient
essence format among the alternatives.

Sequence Class
The Sequence class combines an ordered list of Segments and Transitions.

The Sequence class is a subclass of Segment.

Component

Sequence

1..n1..n
{ordered}

+Components

Segment

A Sequence object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:Components PrefT:

StrongReferenceVector of
Component

Has an ordered set of Component objects.
Required.

1. The first and last Component in the ordered set shall be Segment objects

2. A Transition object shall only appear in a Sequence between two Segment objects. The length of
each of these Segments shall be greater than or equal to the length of the Transition.

3. If a Segment object has a Transition before it and after it, the sum of the lengths of the
surrounding Transitions shall be less than or equal to the length of the Segment that they
surround.

Developer Release 4 135 AAF Specification Version 1.0 DR4

4. The length of the Sequence shall be equal to the sum of the length of all Segments directly owned
by the Sequence minus the sum of the lengths of all Transitions directly owned by the Sequence.

5. The data kind of each Component in the Sequence object shall be the same as the data kind of
the Sequence.

Note 1 The Sequence object is the mechanism for combining sections of
essence to be played in a sequential manner.

Note 2 If a Sequence object has a Segment followed by another Segment, after
the first Segment is played, the following one begins immediately

Note 3 If a Sequence object has a Transition object, the last section of the
Segment that precedes the Transition, the Transition, and the first section of the Segment
that follows the Transition are overlapped. The duration of the Transition determines the
duration of the section of the preceding and following Segments that are overlapped.

Slot Class
The Slot class represents a Segment of essence in a Package. Slot objects are owned by Packages. A
Slot object has a Segment, which can be a timeline, static, or event Segment.

The Slot class is a subclass of the InterchangeObject class.

All Slot objects shall be members of the set of Slots of a Package object.

The Slot class is an abstract class; consequently, any object that belongs to the Slot class shall also
belong to a subclass of Slot.

Interchange Object

Segment

Slot
SlotID : Int32
SlotName : String
PhysicalTrack : Uint32

+Segment

Developer Release 4 136 AAF Specification Version 1.0 DR4

An Slot object shall have the required properties and may have the optional properties described in the
following table.

Property Name Type Explanation
Pref:SlotID PrefT:Int32 Specifies an integer that is used to reference the

Package Slot. Required.

Pref:SlotName PrefT:String Specifies a text name for the Slot. Optional.

Pref:Segment PrefT:
StrongReference
to Segment

Specifies the value of the Slot. Required.

Pref:
PhysicalTrackNumber

PrefT:UInt32 Specifies the physical channel. Optional.

SourceClip Class
The SourceClip class represents the content data and identifies the source of the content data.

The SourceClip class is a subclass of the SourceReference class.

SourceReference

SourceClip
StartTime : Position
FadeInLength : Length
FadeInType : FadeType
FadeOutLength : Length
FadeOutType : FadeType

A SourceClip object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation
Pref:StartTime PrefT:Position Specifies the offset from the origin of the

referenced Package Slot in edit units
determined by the Source Clip object’s context.
If the SourceID has a value 0, then StartTime
must have a 0 value. Optional; see rule 1.

Developer Release 4 137 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:FadeInLength PrefT:Length Specifies the length of an audio fade in to be

applied to the Source Clip. Optional.

Pref:FadeInType PrefT:FadeType Specifies the type of the audio fade in; may
have one of the following values:

0 No fade
1 Linear amplitude fade
2 Linear power fade
3 Linear dB fade

Additional registered and private fade in types
may be defined. Optional.

Pref:FadeOutLength PrefT:Length Specifies the length of an audio fade out to be
applied to the Source Clip. Optional

Pref:FadeOutType PrefT:FadeType Specifies the type of the audio fade out; may
have one of the following values:

0 No fade
1 Linear amplitude fade
2 Linear power fade
3 Linear dB fade

Additional registered and private audio fade
types may be defined. Optional.

1. If the SourceClip references a TimelineSlot or an EventSlot, then the StartTime property shall be
specified. If the SourceClip references a StaticSlot, then the StartTime property shall not be
specified.

2. The data definition of the Segment owned by the referenced Package Slot shall be the same the
data definition of the Source Clip object.

3. The fade properties are only allowed when the Component DataDefinition specifies Sound.

4. If the source clip references a track that specifies a different edit rate than the track owning the
source clip, the StartTime and Length values must be converted from the edit rate of the track
owning the source clip to the edit rate of the referenced track.

Note 1 In a Composition Package, Source Clips reference a section of essence
by specifying the Material Package that describes the essence.

Note 2 In a Material Package, Source Clips reference the essence by specifying
the File Source Package that is associated with the essence.

Note 3 In a File Source Package, Source clips reference the content data stored
on a physical media, such as tape or film, by specifying the Physical Source Package that
describes the media.

Developer Release 4 138 AAF Specification Version 1.0 DR4

Note 4 In a Physical Source Package, Source Clips reference the content data
stored on a previous generation of physical media by specifying the Physical Source
Package that describes the media.

Note 5 If a Source Package represents the original essence source and there is
no previous generation, then its Source Clips must specify a value 0-0-0 for its SourceID
and 0 values for SourceTrackID and StartTime.

SourcePackage Class
The SourcePackage class describes content data that is either stored in a digital form in a file or stored on
a physical media, such as tape or film.

The SourcePackage class is a subclass of the Package class.

All SourcePackage objects shall be owned by the ContentStorage object.

Pack age

EssenceDescriptor

SourcePackage
+EssenceDescript ion

A SourcePackage object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:EssenceDescription PrefT:

StrongReference
to EssenceDescriptor

Describes the format of the essence associated
with the Source Package. Required.

1. A SourcePackage object shall have one or more Slots.

2. An SourcePackage object shall either be a File Source Package or a Physical Source Package. If
a SourcePackage has a Essence Descriptor that belongs to the FileDescriptor class, then the
SourcePackage is a File Source Package. If a SourcePackage has a Essence Descriptor that
does not belong to the FileDescriptor class, then the SourcePackage is a Physical Source
Package.

Developer Release 4 139 AAF Specification Version 1.0 DR4

3. A File Source Package shall have at least one Slot. If the digital essence is a stream of
interleaved content data, then the File Source Package shall at least have one Slot for each
channel of interleaved content data.

4. A Physical Source Package describes physical media, such as an audio tape, film, or videotape.
A Physical Source Package shall have at least one Slot. If the physical media contains more than
one track of content data, then the Physical Source Package should have one Slot for each
physical track. In addition, the Physical Source Package may have a Slot for timecode data and
may have a Slot for edgecode data.

5. The Slots in a File Source Package should have a Segment that is a Source Clip. If there is a
Package that describes the previous generation of content data, the Source Clip should specify
the PackageID of that Package. The previous generation can be a Physical Source Package or
another File Source Package. If there is no previous generation of content data or there is no
Package describing it, the Source Clip should not have a SourceID property.

6. The Slot in a Physical Source Package should have a Segment that is a Source Clip, Timecode,
or Edgecode. If there is a Package that describes the previous generation of content data, the
Source Clip should specify the PackageID of that Package. The previous generation should be a
Physical Source Package. If there is no previous generation of content data or there is no
Package describing it, the Source Clip should not have a SourceID property.

The length of the Segment in the Package Slot indicates the duration of the essence. If you create a
Source Package for a physical media source and you do not know the duration of the essence, specify a
length of 24 hours.

The essence represented by a Source Package is immutable. If the essence changes, such as if a
videotape is redigitized, you must create a new Source Package with a new Package ID.

SourceReference Class
SourceReference is an abstract class that represents the essence or other data described by a Slot in a
Package.

SourceReference is an abstract class; any object that belongs to the SourceReference class shall also
belong to a subclass of SourceReference.

Segment

SourceReference
Sourc eID : PackageID
Sourc eSlotID : UInt32

Developer Release 4 140 AAF Specification Version 1.0 DR4

A SourceReference object shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:SourceID PrefT:PackageID Identifies the Package being referenced. If the

property is omitted, it means that the Package
owning the SourceReference describes the
original source. Optional.

Pref:SourceSlotID PrefT:UInt32 Specifies the SlotID of a Package Slot within the
specified Package. If the SourceID has a value 0,
then SourceTrackID shall also have a 0 value.
Required.

An SourceReference object in a Package refers to a Slot in another Package by specifying the second
Package's Package ID and the Slot ID of the Slot owned by it. To create a SourceReference that refers to
a Slot within the same Package as the SourceReference, specify a weak reference to the containing
Package.

StaticSlot Class
StaticSlot describes essence data that has no relationship to time, such as a static image.

StaticSlot is a subclass of Slot. Slot objects are owned by Packages.

Slot

StaticSlot

The StaticSlot class does not define any properties.

StaticSlot objects have Segments that do not have any relationship with time; consequently, a StaticSlot
does not define an edit rate.

TaggedValue Class
The TaggedValue class specifies a user-defined tag, key and value.

The TaggedValue class is a subclass of the InterchangeObject class.

Developer Release 4 141 AAF Specification Version 1.0 DR4

TaggedValue
Nam e : St ring
Value : Indirect

Interchange Object

A TaggedValue object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:Name PrefT:Sting User-specified tag. Optional.

Pref:Value PrefT:Indirect User-specified value. Required.

TapeDescriptor Class
The TapeDescriptor class describes audio tape or videotape media.

The TapeDescriptor class is a subclass of the EssenceDescriptor class.

An TapeDescriptor object shall be the EssenceDescription of a Physical Source Package.

TapeDescriptor
FormFactor : TapeCaseType
VideoSignal : VideoSignalType
TapeFormat : TapeFormatType
Length : Length
Manufacturer : String
Model : String
TapeBatchNumber : String
TapeStock : String

EssenceDescriptor

An TapeDescriptor object shall have the required properties and may have the optional properties listed in
the following table.

Developer Release 4 142 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:FormFactor PrefT:TapeCaseType Describes the physical size of the tape;

may have one of the following values:

0 3/4 inch videotape
1 VHS video tape
2 8mm videotape
3 Betacam videotape
4 Compact cassette
5 DAT cartridge
6 Professional audio

tape
Optional.

Pref:VideoSignal PrefT:VideoSignalType Describes the video signal
type; may have one of the
following values:

0 NTSC
1 PAL
2 SECAM

Optional.

Pref:TapeFormat PrefT:TapeFormatType Describes the format of the tape; may have
one of the following values:

0 Betacam
1 BetacamSP
2 VHS
3 S-VHS
4 8mm
5 Hi8

Optional.

Pref:Length PrefT:UInt32 Tape capacity in minutes. Optional.

Pref:Manufacturer PrefT:String Text string to display to end users,
identifying the manufacturer of the tape.
Optional.

Pref:Model PrefT:String Text string to display to end users,
identifying the manufacturer’s brand
designation of the tape. Optional.

Pref:TapeBatchNumber PrefT:String Specifies the batch number of the tape.
Optional

Pref:TapeStock PrefT:String Specifies the string identifying the tape
stock. Optional.

TextClip Class
TextClip has a weak reference to a Slot describing text essence data.

Developer Release 4 143 AAF Specification Version 1.0 DR4

TextClip is an abstract class and is a subclass of SourceReference.

SourceReference

TextClip

The TextClip class does not define any properties.

TextClip references a Package Slot containing text essence data.

TextLocator Class
The TextLocator class provides information to help find a file containing the content data or to help find the
physical media.

The TextLocator class is a subclass of the Locator class.

A TextLocator object shall be the a member of the array of locators in a Essence Descriptor in either a
File Source Package or a Physical Source Package.

TextLocator
Name : String

Locator

A TextLocator object shall have the required properties and may have the optional properties listed in the
following table.

Property Name Type Explanation

Developer Release 4 144 AAF Specification Version 1.0 DR4

Pref:Name PrefT:String Text string containing information to help find the file
containing the essence or the physical media.
Required.

A TextLocator object provides information to the user to help locate the file containing the essence or to
locate the physical media. The TXTLLocator is not intended for applications to use without user
intervention.

TIFFDescriptor Class
The TIFFDescriptor class specifies that a File Source Package is associated with video content data
formatted according to the TIFF specification.

The TIFFDescriptor class is a subclass of the FileDescriptor.

The TIFF video format is a video format which may be used in AAF files, but the TIFF format is not
required for compliance with this document. It is preferable to use either the RGBA or CDCI format for
video content data.

A TIFFDescriptor object shall be owned by a File Source Package.

TIFFDescriptor
IsUniform : Boolean
IsContiguous : Boolean
LeadingLines : Int32
TrailingLines : Int32
JPEGTableID : JPEGTableIDType
Summary : DataValue

FileDescriptor

A TIFFDescriptor object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:IsUniform PrefT:Boolean True for data having the same number

of rows per strip throughout. Required.

Pref:IsContiguous PrefT:Boolean True for data stored in contiguous bytes.
Required.

Developer Release 4 145 AAF Specification Version 1.0 DR4

Pref:LeadingLines PrefT:Int32 Number of leading lines to be thrown
away. Optional; default value is 0.

Pref:TrailingLines PrefT:Int32 Number of trailing lines to be thrown
away. Optional; default value is 0.

Pref:JPEGTableID PrefT:JPEGTableIDType Registered JPEG table code or
JT_NULL. Optional.

Pref:Summary PrefT:DataValue A copy of the TIFF IFD (without the
sample data). Required.

Note 1 A TIFF Image Descriptor object describes the TIFF image data
associated with the Source Package. The image data is formatted according to the TIFF
specification, Revision 6.0, available from Aldus Corporation. The TIFF object type
supports only the subset of the full TIFF 6.0 specification defined as baseline TIFF in that
document.

Note 2 The JPEGTableID is an assigned type for preset JPEG tables. The table
data must also appear in the TIFFData object along with the sample data, but cooperating
applications can save time by storing a preapproved code in this property that presents a
known set of JPEG tables.

Timecode Class
The Timecode class stores videotape or audio tape timecode information.

The Timecode class is a subclass of the Segment class.

Tim ecode
Start : Pos ition
FPS : UInt16
Drop : Boolean

Segm ent

A Timecode object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:Start PrefT:Position Specifies the timecode at the beginning of the

segment. Required.

Developer Release 4 146 AAF Specification Version 1.0 DR4

Pref:FPS PrefT:UInt16 Frames per second of the videotape or audio tape.
Required.

Pref:Drop PrefT:Boolean Indicates whether the timecode is drop (True value) or
nondrop (False value). Required.

Note A Timecode object can typically appear in either a Source Package or in a
Composition Package. In a Source Package, it typically appears in a Package Slot in a
Source Package that describes a videotape or audio tape. In this context, it describes the
timecode that exists on the tape. In a Composition Package, it represents the timecode
associated with the virtual media represented by the Composition Package. If the
Composition Package is rendered to a videotape, the Timecode should be used to
generate the timecode on the videotape.

TimecodeStream Class
TimecodeStream specifies as stream of timecode data.

TimecodeStream is an abstract class and is a subclass of Segment. TimecodeStream always has a
timecode DataDefinition. TimecodeStream has a subclass TimecodeStream12M.

Segment

TimecodeStream
SampleRate : Rational
Source : DataStream
SourceType : TCSource

A TimcodeStream object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:SampleRate PrefT:Rational Specifies the sample rate of the timecode data

contained in the Source property. Required.

Pref:Source PrefT:DataStream Contains the timecode data. Required

Pref:SourceType PrefT:TCSource Specifies the kind of timecode:

1 LTC timecode

2 VITC timecode

Developer Release 4 147 AAF Specification Version 1.0 DR4

Required.

TimecodeStream specifies a stream of timecode data.

In contrast to TimecodeStream, Timecode specifies a timecode by specifying the starting timecode value;
other timecode values are calculated from the starting timecode and the time offset.

TimecodeStream is useful to store user bits that were specified in the timecode on the videotape. It is also
useful to store timecode when the timecode does not have a linear relationship with the tape, such as
when the tape was accelerating while the essence data was recorded.

TimecodeStream12M Class
TimecodeStream12M specifies a stream of timecode data in the SMPTE 12M format.

Timecode12M is a subclass of Timecode. Timecode objects always have a timecode DataDefinition and
can be used in aTimelinePackage.

TimecodeStream

Tim ecodeStream 12M
IncludeSync : Boolean

A TimecodeStreaPackageject shall have the required properties and may have the optional properties
listed in the following table.

Property Name Type Explanation
Pref:IncludeSync PrefT:Boolean Specifies whether the synchronization data is included

in the timecode stream. Required.

TimecodeStream and TimecodeStream12M specify a stream of timecode data. TimecodeStream12M
conforms to the SMPTE 12M format. If the IncludeSync property has a true value, the synchronization
data is included for each frame. If the IncludeSync property is false, the synchronization data, which has a
fixed value, is omitted from the timecode stream.

In contrast to TimecodeStream, Timecode specifies a timecode by specifying the starting timecode value;
other timecode values are calculated from the starting timecode and the time offset.

Developer Release 4 148 AAF Specification Version 1.0 DR4

TimecodeStream is useful to store user bits that were specified in the timecode on the videotape. It is also
useful to store timecode when the timecode does not have a linear relationship with the tape, such as
when the tape was accelerating while the essence data was recorded.

TimelineSlot Class
TimelineSlot describes time-varying timeline essence.

TimelineSlot is a subclass of Slot. Slot objects are owned by Package objects.

Slot

TimelineSlot
EditRate : Rat ional
Origin : Position

A TimelineSlot shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:EditRate PrefT:Rational Specifies the units of time for the TimelineSlot.

Required.

Pref:Origin PrefT:Position Specifies the offset used to resolve SourceClip
references to this TimelineSlot. Required.

The TimelineSlot specifies the edit rate for the Segment it has. The Segment specifies its length in the edit
rate set by the TimelineSlot. The Segment also specifies its own data kind.

Transition Class
The Transition class specifies that the two adjacent Segments should be overlapped when they are played
and the overlapped sections should be combined using the specified Effect.

The Transition class is a subclass of the Component class.

A Transition object shall be in a Sequence within a Composition Package.

Developer Release 4 149 AAF Specification Version 1.0 DR4

Component

OperationGroup

Transition
Cut Point : Posi t... +OperationGroup

A Transition object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:
OperationGroup

StrongReference to
OperationGroup

Has an OperationGroup that specifies the effect to be
performed during the Transition. Required.

Pref:CutPoint Position Specifies a cutpoint to use if replacing the Transition
with a cut. Required.

Note 1 A Transition object specifies that sections of the preceding and following
segments overlap for the duration of the Transition. The effect combines the essence
from the overlapping sections in some way.

Note 2 The OperationGroup in a Transition shall specify an OperationDefinition
with 2 input segments. The OperationGroup in a Transition shall not have the
InputSegments specified. The input segments will be provided by the segments preceding
and following the Transition.

Note 3 The Transition cut point has no direct effect on the results produced by a
Transition. However, the cut point provides information that is useful if an application
wishes to remove the Transition or substitute a cut when playing the Transition. The cut
point is represented as an offset from the beginning of the Transition. When removing the
Transition, an application would change the Composition Package so that the preceding
Segment ends where the cutpoint is located, and the succeeding Segment starts at that
location. This can be done by trimming the end of the preceding Segment by an amount
equal to the Transition length minus the cut point offset, and trimming the beginning of the
succeeding Segment by an amount equal to the cut point offset.

Developer Release 4 150 AAF Specification Version 1.0 DR4

VaryingValue Class
The VaryingValue class specifies a changing data value for an effect control argument.

The VaryingValue class is a subclass of the Parameter class.

Parameter

InterpolationDefinition

ControlPoint

VaryingValue +Interpolation

1..n1..n {ordered}

+Point List

A VaryingValue object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:Interpolation PrefT:WeakReference to

InterpolationDefinition
Specifies the kind of interpolation to
be used to find the value between
Control Points. Required.

Pref:PointList PrefT:
StrongReferenceVector of
ControlPoint

Has an array of Control Points, each
of which specifies a value and a time
point at which the value is defined.

Required.

1. A VaryingValue object shall have at least one Control Point. A VaryingValue object should have at
least two Control Points, one should specify a value at the time 0,0 and another should specify a
value at the time 1,0.

2. Control Points shall be ordered by their time value.

3. A Varying Value object is a Parameter that returns time-varying values that are determined by an
ordered set of Control Points. Each Control Point specifies the value for a specific time point

Developer Release 4 151 AAF Specification Version 1.0 DR4

within the Segment. The values for time points between two Control Points are calculated by
interpolating between the two values.

4. A Control Point that has a Time value equal to 0.0 represents the time at the beginning of the
Varying Value object; one with a time equal to 1.0 represents the time at the end of the Varying
Value object. Control Points with Time values less than 0.0 and greater than 1.0 are meaningful
but are only used to establish the interpolated values within the Varying Value object—they do not
affect values outside of the duration of the Varying Value object.

5. Since time is expressed as a rational value, any arbitrary time can be specified—the specified
time point does not need to correspond to the starting point of an edit unit.

6. If more than two Control Point objects specify the same value, the last Control Point determines
the value for the time point specified and is used to interpolate values after this time point.

7. The following equation specifies the value at time X, by using a linear interpolation and the values
specified for time A and time B.

ValueX = (TimeX – TimeA) / (TimeB - TimeA) × (ValueB – ValueA) + ValueA

8. If the first Control Point in a Varying Value object specifies a time value greater than 0, this value
is extrapolated to the 0 time point by holding the value constant. If the last Control Point in a
Varying Value object specifies a time value less than 1.0, this value is extrapolated to the 1.0 time
point by holding the value constant. This extrapolation method of holding values is used if the
interpolation method specified for the Varying Value object is constant or linear interpolation.

 Note The Varying Value object specifies a value for each time point within the Varying
Value object; however if you are generating a stream of essence from the Composition
Package owning the Varying Value object, it may be important to adjust values produced
by the Varying Value object based on sample-rate quantization. Within a essence sample
unit, there can only be a single value of the Varying Value object when generating that
sample.

WAVEDescriptor Class
The WAVEDescriptor class specifies that a File Source Package is associated with audio content data
formatted according to the RIFF Waveform Audio File Format (WAVE).

The WAVEDescriptor class is a subclass of the FileDescriptor class.

 The WAVE audio format is a recommended audio format, but the WAVE format is not required for
compliance with this document.

A WAVEDescriptor object shall be owned by a File Source Package.

Developer Release 4 152 AAF Specification Version 1.0 DR4

WAVEDescriptor
Sum mary : DataV alue

Fi leDescriptor

An WAVEDescriptor object shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:Summary PrefT:DataValue A copy of the WAVE file information without the

sample data. Required.

A WAVE Audio Descriptor describes a WAVE object contains digitized audio data in the little-endian byte
ordering (used on the Intel architecture). It contains data formatted according to the Microsoft/IBM
Multimedia Programming Interface and Data Specifications, Version 1.0, but limited to the section
describing the RIFF Waveform Audio File Format audio data. The WAVE file information (without the
sample data) is duplicated in the WAVE Audio Descriptor Summary property to make it more efficient to
access this information.

Developer Release 4 153 AAF Specification Version 1.0 DR4

Appendix B: AAF Classes for
Defining Interchange Objects
This document contains the reference descriptions of the AAF classes. The reference pages are arranged
alphabetically.

ClassDefinition Class
The ClassDefinition class extends the class hierarchy defined in this document by specifying a new class
or by defining additional optional properties for a class defined in this document.

The ClassDefinition class is a subclass of the DefinitionObject class.

PropertyDefinition

ClassDefinit ion
IsConcrete : Boolean

+ParentClass 0..n0..n
{set}

+Properties

MetaDefinition

Developer Release 4 154 AAF Specification Version 1.0 DR4

All ClassDefinition objects are owned by the Dictionary object. A ClassDefinition object shall have the
required classes listed in the following table.

Property Name Type Explanation
Pref:ParentClass PrefT:WeakReference

to ClassDefinition
Specifies the parent of the class being defined.
Required.

Pref:Properties PrefT:
StrongReferenceSet of
PropertyDefinition

Specifies an ordered set of PropertyDefinition
objects that define the properties for a class.
Optional.

Pref:IsConcrete PrefT:Boolean Specifies if the class is concrete. If the class is not
concrete, then it is abstract. Any object in an AAF file
that belongs to an abstract class shall also belong to
a concrete subclass of the abstract class. Required.

1. Any class extension must be descended from the InterchangeObject class. A Class Definition
object specifying the InterchangeObject class shall have a ParentClass property with a weak
reference to itself.

MetaDefinition Class
The MetaDefinition class is an abstract class that defines a class, type, or property in an AAF file.

The MetaDefinition class is a root class.

The MetaDefinition class is an abstract class; consequently an object that belongs to the MetaDefinition
class shall also belong to a subclass of the MetaDefinition class.

MetaDefinition
Identification : AUID
Nam e : String
Description : String

A MetaDefinition object shall have the required properties and may have the optional properties listed in
the following table.

Property Name Type Explanation
Pref:Identification PrefT:AUID Specifies the unique identifier for the item

being defined. Required.

Pref:Name PrefT:String Specifies the display name of the item being
defined. Required.

Developer Release 4 155 AAF Specification Version 1.0 DR4

Pref:Description PrefT:String Provides an explanation of the use of the item
being defined. Optional.

PropertyDefinition Class
PropertyDefinition describes properties allowed for a class.

PropertyDefinition is a subclass of DefinitionObject. An PropertyDefinition object is a owned by a
ClassDefinition object. An PropertyDefinition object has an association with a TypeDefinition object that
defines the property type.

TypeDefinition

PropertyDefinit ion
Is Opt ional : Boolean
LocalIdenti ficat ion : UInt16
Is UniqueIdent ifier : Boolean

+Type

MetaDefinition

A PropertyDefinition object shall have the required properties and may have the optional properties listed
in the following table.

Property Name Type Explanation
Pref:Type PrefT:WeakReference

to TypeDefinition
Specifies the property type. Required.

Pref:IsOptional PrefT:Boolean Specifies whether objects instances can omit a
value for the property. Required.

Pref:
LocalIdentification

PrefT:UInt16 Specifies a local integer identification that is
used to identify the property in the AAF file.
Required.

Pref:
IsUniqueIdentifier

PrefT:Boolean Specifies that this property provides a unique
identification for this object. Optional.

Developer Release 4 156 AAF Specification Version 1.0 DR4

The PropertyDefinition object specifies that a property can be used in a class. For classes defined by this
specification, the ClassDefinition object can omit any properties defined in this document.

Note the LocalIdentification property is used internally within the AAF file for efficiency purposes but has
no semantic meaning.

Related interfaces in the AAF Reference Implementation SDK are IAAFPropertyDef and IAAFClassDef.

TypeDefinition Class
TypeDefinition defines a property type.

TypeDefinition is a subclass of DefinitionObject. Type Definition is an abstract class. Any object in an AAF
file that belongs to the TypeDefinition class shall also belong to a subclass of TypeDefinition.
TypeDefinition objects are owned by the Dictionary object.

TypeDefinition

MetaDefinition

The TypeDefinition class does not define any additional properties.

TypeDefinitionCharacter Class
TypeDefinitionCharacter defines a property type that has a value of a single 2-byte character.

TypeDefinitionCharacter is a subclass of TypeDefinitionObject. TypeDefinitionEnumeration objects are
owned by the Dictionary object.

TypeDefinition

TypeDefinitionCharacter

Developer Release 4 157 AAF Specification Version 1.0 DR4

The TypeDefinitionCharacter class does not define any additional properties.

TypeDefinitionEnumeration Class
TypeDefinitionEnumeration defines a property type that can have one of a set of integer values.

TypeDefinitionEnumeration is a subclass of TypeDefinitionObject. TypeDefinitionEnumeration objects are
owned by the Dictionary object.

TypeDefinition

TypeDefinitionEnumeration
ElementNames : StringArray
ElementValues : Int64Array +ElementType

A TypeDefinitionEnumeration object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:ElementType PrefT:

WeakReference to
TypeDefinition

Specifies the TypeDefinition that defines the underlying
integer type. Required.

Pref:ElementNames PrefT:StringArray Specifies the names associated with each enumerated
value. Required.

Pref:
ElementValues

PrefT:Int64Array Specifies the valid enumerated values. The integer
values shall be positive and each value in the array
shall be unique. Required.

TypeDefinitionExtendibleEnumeration
TypeDefinitionExtendibleEnumeration defines a property type that can have one of an extendible set of
AUID values.

Developer Release 4 158 AAF Specification Version 1.0 DR4

TypeDefinit ion

TypeDefinitionExtendibleEnumation
ElementNames : StringArray
ElementValues : AUIDArray +ElementType

A TypeDefinitionExtendibleEnumeration object shall have the required properties listed in the following
table.

Property Name Type Explanation
Pref:ElementNames PrefT:StringArray Specifies the names associated with each enumerated

value. Required.

Pref:
ElementValues

PrefT:AUIDArray Specifies the known AUID values that can be used in
this type. Required

TypeDefinitionFixedArray Class
TypeDefinitionFixedArray defines a property type that has a fixed number values of the underlying type.
The order of the values is meaningful.

TypeDefinitionFixedArray is a subclass of TypeDefinition. TypeDefinitionFixedArray objects are owned by
the Dictionary object.

TypeDefinition

TypeDefinitionFixedArray
ElementCount : UInt32 +ElementType

A TypeDefinitionFixedArray object shall have the required properties and may have the optional properties
listed in the following table.

Developer Release 4 159 AAF Specification Version 1.0 DR4

Property Name Type Explanation
Pref:ElementType PrefT:

WeakReference
to TypeDefinition

Specifies the TypeDefinition that defines the type of each
element of the array. Required.

Pref:ElementCount PrefT:UInt32 Specifies the number of elements in the array. Required.

TypeDefinitionIndirect Class
TypeDefinitionIndirect defines a property type that has a value whose type is specified in each instance.

TypeDefinitionIndirect is a subclass of TypeDefinitionObject. TypeDefinitionIndirect objects are owned by
the Dictionary object.

TypeDef inition

TypeDefinitionIndirect

The TypeDefinitionIndirect class does not define any additional properties.

TypeDefinitionInteger Class
TypeDefinitionInteger defines a property type that is an integer with the specified number of bytes.

TypeDefinitionInteger is a subclass of TypeDefinition. TypeDefinitionInteger objects are owned by the
Dictionary object.

TypeDefinition

TypeDefinitionInteger
Size : UInt8
IsS igned : Boolean

Developer Release 4 160 AAF Specification Version 1.0 DR4

A TypeDefinitionInteger object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:Size PrefT:UInt8 Specifies the number of bytes to store the integer. Legal

values are 1, 2, 4, and 8. Required.

Pref:IsSigned PrefT:Boolean Specifies if the integer is signed (True) or unsigned (False).
Required

TypeDefinitionOpaque Class
TypeDefinitionOpaque defines a property type that has a value whose type is specified in each instance.

TypeDefinitionOpaque is a subclass of TypeDefinitionIndirect. TypeDefinitionOpaque objects are owned
by the Dictionary object.

TypeDefinitionOpaque

TypeDefinitionIndirect

The TypeDefinitionOpaque class does not define any additional properties.

TypeDefinitionRecord Class
TypeDefinitionRecord defines a property type that consists of an ordered set of fields, where each field
has a name and type.

TypeDefinitionRecord is a subclass of TypeDefinition. TypeDefinitionRecord objects are owned by the
Dictionary object.

Developer Release 4 161 AAF Specification Version 1.0 DR4

TypeDefini tion

TypeDefini tionRecord
MemberNames : StringArray

1..n1..n
{ordered}

+MemberTypes

A TypeDefinitionRecord object shall have the required properties listed in the following table.

Property Name Type Explanation
Pref:MemberTypes PrefT:

WeakReferenceVector
of TypeDefinition

Specifies the type of each element of the record.
Required.

Pref:MemberNames PrefT:StringArray Specifies the name of each element of the record.
Required.

TypeDefinitionRename Class
TypeDefinitionRename defines a property type that has the same structure and representation as its
underlying type but has a different meaning.

TypeDefinitionRename is a subclass of TypeDefinition. TypeDefinitionRename objects are owned by the
Dictionary object.

TypeDefinit ion

TypeDefinitionRename

+RenamedType

A TypeDefinitionRename object shall have the required property listed in the following table.

Property Name Type Explanation
Pref:RenamedType PrefT:

WeakReference
to TypeDefinition

Specifies the underlying type. Required.

Developer Release 4 162 AAF Specification Version 1.0 DR4

TypeDefinitionSet Class
TypeDefinitionSet defines a property type that has a collection of object references to uniquely identified
objects. The order of the objects has no meaning.

TypeDefinitionSet is a subclass of TypeDefinition. TypeDefinitionSet objects are owned by the Dictionary
object.

TypeDefinition

TypeDefinit ionSet
+ElementType

A TypeDefinition object shall have the required property listed in the following table.

Property Name Type Explanation
Pref:ElementType PrefT:

WeakReference
to TypeDefinition

Specifies the TypeDefinition that identifies the kind of object
reference. This TypeDefinition shall belong to either the
TypeDefinitionStrongObjectReference or
TypeDefinitionWeakObjectReference. Required.

TypeDefinitionStream Class
TypeDefinitionStream defines a property type that is stored in a stream and has a value that consists of a
varying number of the bytes. The order of the bytes is meaningful.

TypeDefinitionStream is a subclass of TypeDefinition. TypeDefinitionStream objects are owned by the
Dictionary object.

Developer Release 4 163 AAF Specification Version 1.0 DR4

TypeDefinit ion

TypeDefinitionStream

The TypeDefinitionStream class does not define any additional properties.

TypeDefinitionString Class
TypeDefinition defines a property type that consists of a zero-terminated array of the underlying character
or integer type.

TypeDefinitionString is a subclass of TypeDefinition. TypeDefinitionString objects are owned by the
Dictionary object.

TypeDefinit ion

TypeDefinitionString
+ElementType

A TypeDefinitionString object shall have the required properties and may have the optional properties
listed in the following table.

Property Name Type Explanation
Pref:ElementType PrefT:

WeakReference to
TypeDefinition

Specifies the string element, which may be a character
(TypeDefinitionCharacter) or integer
(TypeDefinitionInteger). Required.

Developer Release 4 164 AAF Specification Version 1.0 DR4

TypeDefinitionStrongObjectReference Class
TypeDefinitionStrongObjectReference defines a property type that defines an object relationship where
the target of the strong reference is owned by the object with the property with the
TypeDefinitionStrongObjectReference type. An object can be the target of only one strong reference.

TypeDefinitionStrongObjectReference is a subclass of TypeDefinition.
TypeDefinitionStrongObjectReference objects are owned by the Dictionary object.

TypeDefinition

ClassDefinition

TypeDefini tionSt rongObject Reference
+ReferencedType

A TypeDefinitionStrongObjectReference object shall have the required property listed in the following
table.

Property Name Type Explanation
Pref:
ReferencedType

PrefT:
WeakReference to
ClassDefinition

Specifies the class that the referenced object shall
belong to (the referenced object may also belong to a
subclass of the referenced class). Required.

TypeDefinitionVariableArray Class
TypeDefinitionVariableArray defines a property type that has a varying number values of the underlying
type. The order of the values is meaningful.

TypeDefinitionVariableArray is a subclass of TypeDefinition. TypeDefinitionVariableArray objects are
owned by the Dictionary object.

Developer Release 4 165 AAF Specification Version 1.0 DR4

TypeDefinition

TypeDefinitionVariableArray
+ElementType

A TypeDefinition object shall have the required property listed in the following table.

Property Name Type Explanation
Pref:ElementType PrefT:

WeakReference
to TypeDefinition

Specifies the type of the element of the array. Required.

TypeDefinitionWeakObjectReference Class
TypeDefinitionWeakObjectReference defines a property type that defines an object relationship where the
target of the weak reference is referenced by the object with the property with the
TypeDefinitionWeakObjectReference type. Only objects that define a unique identification (AUID) can be
the targets of weak object references. An object can be the target of one or more than one weak
references.

TypeDefinitionWeakObjectReference is a subclass of TypeDefinition.
TypeDefinitionWeakObjectReference objects are owned by the Dictionary object.

TypeDefinition

ClassDefinition

TypeDefinitionWeakObjectReference
TargetList : AUIDArray +ReferencedType

Developer Release 4 166 AAF Specification Version 1.0 DR4

A TypeDefinitionWeakObjectReference object shall have the required property listed in the following table.

Property Name Type Explanation
Pref:
ReferencedType

PrefT:
WeakReference to
ClassDefinition

Specifies the class that the referenced object shall belong
to (the referenced object may also belong to a subclass of
the referenced class). Required.

Pref:
TargetList

PrefT:AUIDArray Specifies the AUIDs that specify the properties from the
root of the file to the property that has the
StrongReferenceSet containing the uniquely identified
objects that may be the target of the weak reference. The
first AUID in the array identifies the object in the file’s root
storage. The last AUID in the array identifies the property
containing the set of uniquely identified objects. The AUIDs
between the first and the last identify properties that must
have a TypeDefinitionStrongObjectReference and define
the containing hierarchy from the object in the root storage
to the object containing the StrongReferenceSet. Required.

Developer Release 4 167 AAF Specification Version 1.0 DR4

Appendix C Data types
This document defines two sets of types: the data type and the data definition. The data type specifies the
type of property values and of parameters. The data definition specifies the type for objects in the
Component class. Annex A lists the data type of each property in each class. Objects that belong either to
the class Component have a property that identifies the data definition of the object. Data definition is
used to identify the basic types of essence produced by Components.

The data type is identified by a globally unique integer. Table B-1 lists the data types identified by the
name.

The data definition is identified by a globally unique integer. Table B-2 lists the data kinds identified by the
name.

Table C-1 – Data Types

Data Type Explanation

PrefT:AUID 128-bit unique integer identifier which is a SMPTE Universal Label
conforming to SMPTE 298M-1997 or another 128-bit unique identifier

PrefT:AUIDArray Array of 128-bit unique integer identifiers

PrefT:Boolean Specifies either True or False.

PrefT:Char Specifies a single character value.

PrefT:ColorSitingType Specifies how to compute subsampled values as a 16-bit enumerated
type. Values are

0 coSiting To calculate subsampled pixels, take the
preceding pixel’s color value, discard the other
color values, and cosite the color with the first
luminance value.

Developer Release 4 168 AAF Specification Version 1.0 DR4

Table C-1 – Data Types

Data Type Explanation

1 averaging To calculate subsampled pixels, take the average
of the two adjacent pixel’s color values, and site
the color in the center of the luminance pixels.

2 threeTap To calculate subsampled pixels, take 25 percent
of the previous pixel’s color value, 50 percent of
the first value, and 25 percent of the second
value. For the first value in a row, use 75 percent
of that value since there is no previous value. The
threeTap value is only meaningful when the
HorizontalSubsampling property has a value of 2.

PrefT:CompCodeArray Specifies the order in which the RGBA components are stored as an
array of character. Each element in the array represents a different
color component. The array can contain the following characters:

‘A’ Alpha component
‘B’ Blue component
‘F’ Fill component
‘G’ Green component
‘P’ Palette code
‘R’ Red component
‘0’ no component

Each character except ‘0’ can appear no more than one time in the
array. The array is terminated by a 0 byte and has a maximum of 8
elements (including the terminating byte). Note that a byte with the
ASCII ‘0’ indicates no component and a byte with a 0 (ASCII NULL)
terminates the string.

PrefT:CompSizeArray Specifies the number of bits reserved for each component as an array
of UInt8 in the order specified in the CompCodeArray. The array is
terminated by a 0 byte and has a maximum of 8 elements (including
the terminating byte).

PrefT:DataValue Specifies essence or a block of data whose type is specified by a data
kind.

PrefT:EdgeType Specifies the kind of film edge code as an enumerated Int16. Values
are:

0 ET_NULL Invalid edge code

1 ET_KEYCODE Eastman Kodak KEYKODE TM format.

2 ET_EDGENUM4 edge code format: nnnn+nn.

3 ET_EDGENUM5 edge code format: nnnnn+nn.

PrefT:EditHintType Specifies hints to be used when editing Control Points. Values are:

0 EH_Proportional

1 EH_RelativeLeft

Developer Release 4 169 AAF Specification Version 1.0 DR4

Table C-1 – Data Types

Data Type Explanation

2 EH_RelativeRight

PrefT:FadeType Specifies the type of the audio fade; may have one of the following
values:

0 No fade
1 Linear amplitude fade
2 Linear power fade
3 Linear dB fade

Additional registered and private fade types may be defined.

PrefT:FilmType Specifies the format of the film. as an Int16 enumerated value. Values
are:

0 FT_NULL invalid film type

1 FT_35MM 35 millimeter film

2 FT_16MM 16 millimeter film

3 FT_8MM 8 millimeter film

4 FT_65MM 65 millimeter film

PrefT:Int8 Specifies an 8-bit 2's complement integer value.

PrefT:Int8Array Specifies an array of Int8 values.

PrefT:Int16 Specifies a 16-bit 2's complement integer value.

PrefT:Int16Array Specifies an array of Int16 values.

PrefT:Int32 Specifies a 32-bit 2's complement integer value.

PrefT:Int32Array Specifies an array of Int32 values.

PrefT:Int64 Specifies a 64-bit 2's complement integer value.

PrefT:Int64Array Specifies an array Int64 values.

PrefT:JPEGTableIDType Specifies the JPEG tables used in compressing TIFF data.

PrefT:LayoutType Describes whether all data for a complete sample is in one frame or
is split into more than one field as an enumerated Int16. Values are:

0 FULL_FRAME: frame consists of a full sample in progressive scan
lines

1 SEPARATE_FIELDS: sample consists of two fields, which when
interlaced produce a full sample

2 SINGLE_FIELD: sample consists of two interlaced fields, but only
one field is stored in the data stream

3 MIXED_FIELDS
PrefT:Length Specifies the length of a Component with an UInt64.

PrefT:PackageID Specifies a 32-byte unique identifier that can hold a SMPTE UMID.

Developer Release 4 170 AAF Specification Version 1.0 DR4

Table C-1 – Data Types

Data Type Explanation

PrefT:PixelRectangle Specifies of Rectangle in pixels. Is Record with the following
elements:

 Horizontal: UInt 16

 Vertical: UInt16

PrefT:Position Specifies an offset into a Component with an Int64.

PrefT:ProductVersion Specifies the version number of an application. Consists of 5 Uint16
integer values. The first four integers specify the major, minor,
tertiary, and patch version numbers. The fifth integer has the following
values:

0 kVersionUnknown No additional version information

1 kVersionReleased Released product

2 kVersionDebug Development version

3 kVersionPathched Released version with patches

4 kVersionBeta Prerelease beta test version

5 kVersionPrivateBuild Version not intended for general release

PrefT:PulldownKindType Specifies whether the Pulldown object is converting from NTSC or
PAL video and whether frames are dropped or the video is played at
another speed. Values are:

0 kTwoThreePD Converting between NTSC and film by
dropping or adding frames

1 kPalPD Converting between PAL and film by dropping or
adding frames

2 kOneToOneNTSC Converting between NTSC and film
by speeding up or slowing down the frame rate.

3 kOneToOnePAL Converting between PAL and film by
speeding up or slowing down the frame rate.

4 kVideoTapNTSC Converting between NTSC and film
by recording original film and video sources simultaneously.

PrefT:
PulldownDirectionType

Specifies whether the Pulldown object is converting from tape to film
speed or from film to tape speed. Values are:

0 kVideoToFilmSpeed The InputSegment is at video speed
and the Package track owning the Pulldown object is at film speed.

1 kFilmToVideoSpeed The InputSegment is at film speed
and the Package track owning the Pulldown object is at video speed.

PrefT:PhaseFrameType Specifies the phase within the repeating pulldown pattern of the first
frame after the pulldown conversion. A value of 0 specifies that the

Developer Release 4 171 AAF Specification Version 1.0 DR4

Table C-1 – Data Types

Data Type Explanation

Pulldown object starts at the beginning of the pulldown pattern.

PrefT:Rational Specifies a rational number by means of an Int32 numerator and an
Int32 denominator.

PrefT:
RationalRectangle

Specifies an area within an image with 4 rationals, where the first two
rationals specify the horizontal and vertical position of the upper-left
corner of the rectangle and the last two rationals specify the horizontal
and vertical position of the lower-right corner. The position of the
center of the image is defined as (0/1, 0/1) (rounding up and to the
left); the upper left pixel of the image is (-1/1, -1/1); and the lower-
right pixel of the image is (1/1, 1/1).

PrefT:RGBAComponent Specifies a component within an RGBA pixel. Is a record with the
following fields:

Field Type Explanation
Code RGBAComponentKind Enumerated value specifying component
Size UInt8 Integer specifying the number of bits

PrefT:
RGBAComponentKind

Enumerated type that specifies the color or function of a component
within a pixel. May have the following values:

0x52 ‘R’ Red component
0x47 ‘G’ Green component
0x42 ‘B’ Blue component
0x41 ‘A’ Alpha component
0x46 ‘F’ Fill component
0x50 ‘P’ Palette code
0x00 Terminates list of components

PrefT:RGBALayout Specifies the order and size of the components within the pixel. The
RGBALayout type is a fixed-size 8 element array, where each
element consists of the RGBAComponent type with the following
fields:

Code Enumerated value specifying component
Size UInt8 integer specifying the number of bits

For each component in the pixel, the following codes should be
specified:

0x52 ‘R’ Red component
0x47 ‘G’ Green component
0x42 ‘B’ Blue component
0x41 ‘A’ Alpha component
0x46 ‘F’ Fill component
0x50 ‘P’ Palette code
0x00 Terminates list of components
A Fill component indicates unused bits. After the components have

Developer Release 4 172 AAF Specification Version 1.0 DR4

Table C-1 – Data Types

Data Type Explanation

been specified, the remaining Code and Size fields should be set to 0.

PrefT:String Specifies a string of Unicode characters.

PrefT:StrongRef Specifies an owned object, which is logically contained by the owning
object..

PrefT:
StrongReferenceVector

Specifies an ordered set of owned objects.

PrefT:
StrongReferenceSet

Specifies an unordered set of owned uniquely identified objects.

PrefT:TapeCaseType Describes the physical size of the tape; may have one of the following
values:

0 3/4 inch videotape
1 VHS video tape
2 8mm videotape
3 Betacam videotape
4 Compact cassette
5 DAT cartridge
6 Professional audio tape

PrefT:TapeFormatType Describes the format of the tape; may have one of the following
values:

0 Betacam
1 BetacamSP
2 VHS
3 S-VHS
4 8mm
5 Hi8

PrefT:TCSource Specifies the kind of timecode; may have one of the following values:

 1 LTC timecode

 2 VITC timecode

PrefT:TimeStamp Specifies a date and Universal Time Code using the following
structure:

 Type TimeStamp Record {
 Type Date Record {
 Type Year Int16
 Type Month UInt8
 Type Day UInt8
 }
 Type Time Record {
 Type Hour UInt8
 Type Minute UInt8
 Type Second UInt8

Developer Release 4 173 AAF Specification Version 1.0 DR4

Table C-1 – Data Types

Data Type Explanation

 Type Fraction UInt8
 }
}
Where Fraction is expressed in 1/100 of a second.

PrefT:UInt8 Specifies an unsigned 8-bit integer value.

PrefT:UInt8Array Specifies an array of unsigned 8-bit integer value.

PrefT:UInt16 Specifies an unsigned 16-bit integer value.

PrefT:UInt16Array Specifies an array of unsigned 16-bit integer value.

PrefT:UInt32 Specifies an unsigned 32-bit integer value.

PrefT:UInt32Array Specifies an array of unsigned 64-bit integer values.

PrefT:UInt64 Specifies an unsigned 64-bit integer value.

PrefT:UInt64Array Specifies an array of 32-bit integer values.

PrefT:VersionType Specifies a 2-byte unsigned version number.

PrefT:VideoSignalType Specifies the type of video signal on the videotape. Values are:

0 NTSC
1 PAL
2 SECAM

PrefT:WeakRef Reference to an object that defines a unique identifier

PrefT:
WeakReferenceVector

Reference to an ordered set of uniquely identified objects

PrefT:WeakReferenceSet Reference to an unordered set of uniquely identified objects

Developer Release 4 174 AAF Specification Version 1.0 DR4

Table B-2 – Data Definitions

Data Kind Explanation

PrefT:Edgecode Specifies a stream of film edge code values.

PrefT:Matte Specifies a stream of essence that contains an image of alpha
values.

PrefT:Picture Specifies a stream of essence that contains image data.

PrefT:PictureWithMatte Specifies a stream of essence that contains image data and a
matte.

PrefT:Sound Specifies a stream of essence that contains a single channel of
sound.

PrefT:Timecode Specifies a stream of tape timecode values.

Developer Release 4 175 AAF Specification Version 1.0 DR4

Appendix D Conventions
The following documentation conventions are used in the diagrams in this document.

Developer Release 4 176 AAF Specification Version 1.0 DR4

Class diagramComponent Component

+DataDefinition : RefAUID
+Length : Length

Class diagram
with properties

InterchangeObject

Component

+DataDefinition : RefAUID
+Length : Length

Class diagram
showing
inheritance

superclass

subclass

Component

Italics indicate
abstract class

Transition
concrete class

abstract class

Property Name Type
DataDefinition RefAUID
Length Length

Mob

+MobID : AUID
+Name : String
+Slots : ObjRefArray
+LastModified : TimeStamp
+CreationTime : TimeStamp
+MobComments : ObjRefArray

MobSlot1..*

{ordered}

Class diagram showing
containment

contained object

1..* specifies that the Mob can contain
between 1 and any number of MobSlots
{ordered} specifies that the order of the
contained objects is meaningful

Transition

Transition

underline
indicate
instance

instance

class

Component

+DataDefinition : RefAUID
+Length : Length

DataDefinition

Class diagram showing
reference by AUID

referenced object

AAF Specification Version 1.0 DR4 177

Appendix E: Terms and Definitions
abstract class
class that is not sufficient to define an object; an object must also belong to a subclass of the abstract
class
audio
audio essence
sound in transmitted or stored in any form, including sound stored on analog tape, analog sound
broadcast on radio waves, sound transmitted through air, and sound stored in a digital format on tape or
disk
AUID
unique identifier which is a SMPTE Universal Label conforming to SMPTE 298M-1997 or another 128-bit
unique identifier
big-endian
byte order in which the most-significant byte is stored first (at the address specified, which is the lowest
address of the series of bytes that constitute the value); bytes are stored with the most-significant bit first
byte order
convention used to stored multibyte numeric values on a platform
class
category of objects, which have common properties, relationships, and semantics
class dictionary
structure in a file that defines the class hierarchy for classes not specified in this document
class hierarchy
specification to the subclass and superclass relationship among a set of classes
component
basic object that defines essence in a slot
composition Package
package that specifies association and composition metadata that describe how to combine and modify
content elements and content items to produce a content package

AAF Specification Version 1.0 DR4 178

composition metadata
metadata that describes how to combine essence in a sequence and to modify essence
content
program material and related information of any variety
data definition
structure that determines the basic kind of data produced by a component
data type
structure that determines the kind of value that can be stored in a property
derivation metadata
metadata that describes the source that provides the values of an object
descriptive metadata
metadata that provides additional information
edgecode
codes that are marked on film to facilitate the location of specific frames
edit rate
rational number that specifies the units used to specify the duration of components in a slot; the edit rate
is the number of units that equal one second in clock time
edit unit
unit in which the integer length of components in a slot are specified
essence
parts of content that directly represent program material, such as audio, video, graphic, still-image, text,
or other sensor data
essential metadata
metadata that describes that is required to decode the essence
file source Package
package that describes an essence component stored in a digital form in a file
Effect
segment that combines or modifies one or more input segments according to the specified effect definition
and controls parameters
header
root object of the file that has the Packages and EssenceData objects in the file and defines extensions to
the classes used to store objects in the file
inheritance
mechanism that defines a relationship between classes where a subclass inherits the properties,
relationships, and semantics of its superclass
interleaved channels
storage format that combines two or more channels of audio data or video data into a single stream

AAF Specification Version 1.0 DR4 179

little-endian
byte order in which the least-significant byte is stored first (at the address specified, which is the lowest
address of the series of bytes that constitute the value); bytes are stored with the most-significant bit first
material Package
package that specifies association and derivation metadata; it provides a level of indirection between a
composition Package and a file source Package and synchronizes file source Packages
metadata
parts of content which data that is used to describe essence or provide information on how to use the
essence
package
structure that has a globally unique identity and describes essence
PackageID
value that defines the unique identification of a Package
 slot
object in a package that describes essence and is externally accessible
object
collection of properties, each of which has a name, a type, and a value
ordered set
ordered collection of unique values
physical source package
package that describes physical media
property
element in a file that has a name, type, and value
property name
property type name

text name that identifies a data type
property value
data that stored in a property, which is in an object
rational number
numeric value expressed by an integer numerator and an integer denominator that specifies a numeric
value that can have a fractional part
relational metadata
metadata that describes how to synchronize or interleave essence
sample rate
rational number that specify the number of samples of essence that are played in one second
segment
component that has well defined boundaries; a segment can be used without any other components in
contrast to a transition, which can only be used in a sequence and need to be surrounded by segments

AAF Specification Version 1.0 DR4 180

sequence
sequence that has an ordered set of components and causes them to be arranged in a sequential order
set
unordered collection of unique values
edit interchange file
storage wrapper data file that stores essence and metadata in objects that conforms to this document
source clip
segment that specifies essence by referencing a slot in a package
source package
package that describes an essence component stored either in a digital form or on a physical media
source
static metadata
metadata that describes the edit interchange file as a whole
storage wrapper
persistent storage mechanism for the storage of complex content
NOTE This mechanism allows descriptive information to be stored with the data in such a way
that it is possible to query the wrapper file to find out the format of the data and then to use that
information to read and interpret the encapsulated data.
strong reference
relationship between objects where one object is the owner of another object. An object can be owned
only by a single object at one time. A strong reference defines a logical containment, where the owning
object logical contains the owned object.
subclass
class that is defined as having the properties, relationships and semantics as another class, which is
called its superclass, and may have additional properties, relationships, and semantics that are not
present in the superclass
superclass
class that has another class as its subclass
timecode
codes that are written on videotape and audiotape to facilitate the location of a point on the tape
transition
component which causes the segment that precedes it in the sequence to be overlapped in time with the
segment that follows it in the sequence
variant metadata
metadata that describes an element or subsection within an edit interchange file
weak reference
relation between objects where one object has a reference to a second object; the second object is
uniquely identified. In contrast with a strong reference, a weak reference specifies an association
relationship but does not specify ownership. An object can be the target of weak references from more
than one object.

AAF Specification Version 1.0 DR4 181

	1. Introduction
	Background
	Digital Essence Interchange
	Data Encapsulation
	Compositional Information
	Media Derivation
	Flexibility and Efficiency
	Extensibility
	Digital Essence Delivery
	AAF File Format
	AAF Specification Development

	2. Introduction to Objects, Packages, and Essence Data
	Advantages of Object Oriented Interchange
	Object Model
	Header Object
	Dictionary
	Essence Data and Metadata
	Packages
	
	
	Kinds of Packages
	Physical Source Packages and Other Kinds of Source Packages
	File Source Packages
	Material Packages
	Composition Packages
	Package Kind Summary

	Components
	File SourcePackages and EssenceData objects
	
	
	How File Source Packages are Associated with Digital Essence Data
	Kinds of Slots in Packages
	How and Why One Package Refers to Another Package
	Static Image Essence in Packages
	Time-varying Video and Audio Essence in Packages
	Event Data in Packages

	3. Composition Packages
	Composition Package Basics
	Timeline Slots
	Sequences
	Transitions
	Cuts and the Transition Cut Point
	Treating Transitions As Cuts
	Restriction on Overlapping Transitions

	Static Slots
	Combining Different Types of Slots
	Conversion Operations

	Operations
	Effect Input Essence Segments
	Filter Effects with One Input Essence Segment
	Effects with Two Input Essence Segments

	Effect Definitions
	Effect Control Parameters
	Rendered Effect Essence
	Effects in Transitions

	Scope and References
	Why Use Scope References
	How to Specify Scope References

	Other Composition Package Features
	Preserving Editing Choices with Selectors
	Using Audio Fade In and Fade Out

	4. Describing and Storing Essence
	Overview of Essence
	Describing Essence with Material Packages
	Describing Essence with Source Packages
	Sample Rate and Edit Rate in Timeline Essence
	The Source Origin in Timeline Essence
	Converting Edit Units to Sample Units

	Describing Essence Format with Essence Descriptors
	Describing Image Essence
	Properties Describing Interleaving
	Properties Describing Geometry
	Properties Describing Sampling
	Properties Describing Alpha Transparency
	Properties Describing Compression
	RGBA Component Image Descriptors
	Color Difference Component Image Descriptors
	Describing TIFF Image Essence

	Describing Audio Essence
	Describing Tape and Film
	Describing Timecode
	Describing Edgecode

	Describing Essence with Pulldown Objects
	What is Pulldown?
	NTSC Three-Two Pulldown
	Other Forms of Pulldown
	Pulldown Objects in Source Packages

	5. Extending AAF
	Overview of Extending AAF
	Defining New Effects
	Defining New Classes
	Defining New Properties
	Defining New Essence Types
	Tracking Changes with Generation

	6. AAF Class Model and Class Hierarchy
	Object model goals
	Classes and semantic rules
	Class Hierarchy

	Appendix A: AAF Object Classes for Essence and Metadata Interchange
	AIFCDescriptor Class
	CDCIDescriptor Class
	CodecDefinition Class
	CommentMarker Class
	Component Class
	CompositionPackage Class
	ConstantValue Class
	ContainerDefinition Class
	ContentStorage Class
	ControlPoint Class
	DataDefinition Class
	DefinitionObject Class
	Dictionary Class
	DigitalImageDescriptor Class
	Edgecode Class
	EssenceData Class
	EssenceDescriptor Class
	EssenceGroup Class
	Event Class
	EventSlot Class
	FileDescriptor Class
	Filler Class
	FilmDescriptor Class
	GPITrigger Class
	Header Class
	HTMLClip Class
	HTMLDescriptor Class
	Identification Class
	InterchangeObject Class
	InterpolationDefinition Class
	IntraFrameMarker Class
	KLVData Class
	Locator Class
	MaterialPackage Class
	MIDIFileDescriptor class
	NestedScope Class
	NetworkLocator Class
	OperationDefinition Class
	OperationGroup Class
	Package Class
	Parameter Class
	ParameterDefinition Class
	PluginDefinition Class
	Pulldown Class
	RGBADescriptor Class
	ScopeReference Class
	Segment Class
	Selector Class
	Sequence Class
	Slot Class
	SourceClip Class
	SourcePackage Class
	SourceReference Class
	StaticSlot Class
	TaggedValue Class
	TapeDescriptor Class
	TextClip Class
	TextLocator Class
	TIFFDescriptor Class
	Timecode Class
	TimecodeStream Class
	TimecodeStream12M Class
	TimelineSlot Class
	Transition Class
	VaryingValue Class
	WAVEDescriptor Class

	Appendix B: AAF Classes for Defining Interchange Objects
	ClassDefinition Class
	MetaDefinition Class
	PropertyDefinition Class
	TypeDefinition Class
	TypeDefinitionCharacter Class
	TypeDefinitionEnumeration Class
	TypeDefinitionExtendibleEnumeration
	TypeDefinitionFixedArray Class
	TypeDefinitionIndirect Class
	TypeDefinitionInteger Class
	TypeDefinitionOpaque Class
	TypeDefinitionRecord Class
	TypeDefinitionRename Class
	TypeDefinitionSet Class
	TypeDefinitionStream Class
	TypeDefinitionString Class
	TypeDefinitionStrongObjectReference Class
	TypeDefinitionVariableArray Class
	TypeDefinitionWeakObjectReference Class

	Appendix C Data types
	Appendix D Conventions
	Appendix E: Terms and Definitions

